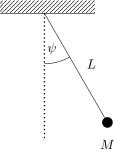
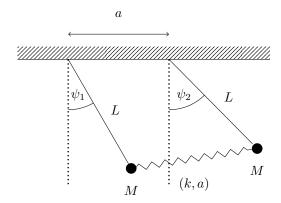

Problème I

Deux masses M_1 et M_2 sont placées sur un plan horizontal et libre de se déplacer sans frottement. Elles sont reliées entres elles par un ressort idéal de constante de rappel k et de longueur au repos L_0 ; chacune est également reliée à un mur vertical par un ressort idéal de constante de rappel 2k et de longuer au repos L_0 . La distance entre les deux murs est $3L_0$, et on mesure la position des blocs par rapport à leur position d'équilibre.

- a) Donner les équations du mouvement de ce système sous forme matricielle. Donner l'expression des tenseurs K et M.
- b) Utiliser les valeurs propres de matrice $M^{-1}K$ pour trouver les pulsations propres du système.


On suppose maintenant que les deux masses sont identiques $(M_1 = M_2)$.

- c) Donner les vecteurs propres de la matrice $M^{-1}K$ correspondant à chaque pulsation propre. Les utiliser pour trouver la solution générale du problème.
- d) Si à t=0 les deux masses sont au repos, mais que la masse de droite est déplacée d'une distance a vers la droite par rapport à sa position d'équilibre, alors que la masse de gauche est à sa position d'équilibre, donner la solution particulière du système correspondante.



Problème II

a) En utilisant la conservation de l'énergie, établir l'équation du mouvement d'un pendule simple de longueur L et de masse M. On note ψ l'angle d'inclinaison du pendule par rapport à la verticale. Sous quelles conditions peut-on considérer le système comme un oscillateur harmonique? Quelles seraient alors la pulsation et la période du système?

- b) On couple deux pendules de longueur L et de masse M par un ressort idéal de constante de rappel k et de longueur au repos a. Les points d'attaches des pendules sont situés à une distance a l'un de l'autre. On note ψ_1 et ψ_2 l'angle d'inclinaison du premier et du second pendule, respectivement. On supposera que les angles sont petits, i.e. $\psi_1, \psi_2 \ll 1$.
 - (a) Exprimer l'élongation du ressort en fonction des angles ψ_1, ψ_2 et des paramètres L et M. Estimer l'inclinaison du ressort.
 - (b) Utiliser la deuxième loi de Newton pour obtenir les équations du mouvement du système sous forme matricielle. Donner les pulsations propres ainsi que les modes propres correspondant.

