Ondes - DS III

Aucune documentation ni calculatrice permise, durée: 1h30.

Pour obtenir tous vos points, il est important de bien expliquer vos démarches.

Problème I

Soit une onde électromagnétique se propageant dans le vide, dont le champ électrique est

$$\vec{E}(\vec{r},t) = \hat{u}_z E_0 e^{i(\omega t - (ax + by))},$$

avec E_0, a, b , et ω des constantes positives.

- a) Donner la direction de propagation de cette onde.
- b) Donner la direction de polarisation de l'onde.
- c) Exprimer ω en fonction de a,b, et de la vitesse de la lumière, c.
- d) Exprimer le champ magnétique de l'onde en fonction des données du problème.
- e) Exprimer le vecteur de Poynting en fonction des données du problème.

Problème II

On suppose que les vibrations d'une corde de longueur L, tendue selon l'axe des x, sont décrites par l'équation:

$$\frac{1}{c^2} \frac{\partial^2 F(x,t)}{\partial t^2} - \frac{\partial^2 F(x,t)}{\partial x^2} = 0,$$
(1)

avec c>0 une constante réelle. On supposera de plus que les deux extrémités de la corde, situées en x=0 et en x=L, respectivement, sont fixes (F(0,t)=F(L,t)=0).

- a) Donner la relation de dispersion de ces ondes; exprimer leur vitesse de phase et leur vitesse de groupe en fonction des données du problème.
- b) Montrer que les modes propres de cette équation peuvent s'écrire sous la forme

$$F_n(x,t) = \sin\left(\frac{n\pi x}{L}\right)e^{i\omega_n t},$$
 (2)

avec $n \in \mathbb{Z}$.

- c) Exprimer les pulsations propres du système en fonction des données du problème.
- d) Montrer que la solution générale de l'équation (1) peut s'écrire

$$F(x,t) = \sum_{n=1}^{\infty} \sin\left(\frac{n\pi x}{L}\right) \left(a_n \cos(\omega_n t) + b_n \sin(\omega_n t)\right). \tag{3}$$

e) Montrer que les paramètres a_n peuvent s'écrire

$$a_n = \frac{2}{L} \int_0^L F(x,0) \sin\left(\frac{n\pi x}{L}\right) dx. \tag{4}$$

On rappel l'identité trigonométrique

$$2\sin(\phi)\sin(\theta) = \cos(\theta - \phi) - \cos(\theta + \phi). \tag{5}$$

f) On suppose qu'un étudiant mal intentionné fait bouger une des extrémités de la corde de sorte que $F(0,t)=A\cos(\omega t)$, avec A,ω deux constantes réelles. On supposera de plus que ω n'est pas une pulsation propre de la corde. Donner alors la solution générale de l'équation (1). Indice: Considérer la fonction $B\cos(\omega t)\sin(k(L-x))$, avec k et B des constantes à déterminer.