Ondes - Contrôle I

Aucune documentation ni calculatrice permise, durée: 1h30.

1 Questions courtes

Question I: Supposons qu'un pendule oscille avec une période de τ secondes, quelle est alors sa pulsation ω ?

Question II: On suppose que $x_1(t)$ et $x_2(t)$ sont respectivement solutions des équations

$$\ddot{x}_1(t) + \omega^2 x_1(t) = \cos(t), \qquad \ddot{x}_2(t) + \omega^2 x_2(t) = \sin(t).$$

Exprimer la solution de l'équation

$$\ddot{x}(t) + \omega^2 x(t) = 2\cos(t) + 3i\sin(t),\tag{1}$$

en termes de $x_1(t)$ et $x_2(t)$.

Question III: En supposant une solution de la forme $f(t)=f(0)e^{-i\omega t}$, réduire l'équation différentielle

$$\ddot{f}(t) + 3\dot{f}(t) - 4f(t) = 0, (2)$$

à une équation algébrique pour ω , et en donner les solutions.

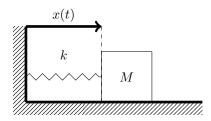
Question IV: Dire si chacune des équations différentielles suivantes est linéaire. Justifier votre réponse.

- a) $\ddot{f}(t) + \omega^2 f(t) = 0$,
- b) $f(t)\ddot{f}(t) + \alpha \dot{f}(t) = 0$,
- c) $\ddot{f}(t) + \dot{f}(t) + x(t)f(t) = 0$.

2 Question longue

Pour obtenir tous vos points, il est important de bien expliquer vos démarches.

On considère une masse M placée sur un plan horizontal et reliée à un mur vertical par un ressort de constante de rappel k et de longueur au repos L_0 . On suppose que la rugosité du plan horizontal provoque une force de la forme $\vec{F}_f = -\mu_c M \vec{v}$, où μ_c est le coefficient de frottement cinétique de la surface et \vec{v} est la vitesse de la masse.



- a) Exprimer les forces agissant sur la masse en termes des données du problème et de x(t), la distance entre la masse et le mur.
- b) Montrer que l'équation du mouvement du bloc peut être mise sous la forme:

$$\ddot{x}(t) + \Gamma \dot{x}(t) + \omega_0^2 x(t) = y, \tag{3}$$

avec Γ, ω_0 , et y des constantes à exprimer en fonction des données du problème.

- c) Sous quelle(s) condition(s) cet oscillateur sera-t-il dit critique?
- d) En supposant que l'oscillateur est sous-amorti (pseudo-périodique), donner la solution générale de l'équation (3).
- e) Si à t = 0 la masse est immobile à une distance $L_0/2$ du mur, exprimer la position de la masse au temps t en fonction des données du problème.