

2021 - 2022

TD Revision - Intégrales Généralisées

Exercice 1. Étudier la nature des intégrales :

a)
$$\int_{1}^{+\infty} \frac{1 - \cos x}{x^2} dx.$$

b)
$$\int_{-1}^{0} \frac{dx}{x(x+2)}$$
.

c)
$$\int_0^{+\infty} \frac{x^2}{x^{\frac{17}{5}} + 1} dx$$
.

$$d) \int_{-\infty}^{-1} \frac{e^{\cos x}}{x} dx.$$

$$e) \int_3^{+\infty} \frac{\arctan(x)}{x^2 + 2x + 7} dx.$$

$$f) \int_{2}^{+\infty} \frac{dx}{x(\ln(x))^{2}}.$$

Solution:

a) Posons $f(x) = \frac{1-\cos x}{x^2}$. Cette fonction est continue sur \mathbb{R}^* donc sur $[1; +\infty[$. Pour étudier la convergence de l'intégrale, il suffit donc d'étudier le comportement au voisinage de l'infini. Maintenant $|\cos x| \le 1$, donc

$$\left| \frac{1 - \cos x}{x^2} \right| \le \frac{|1 - \cos x|}{x^2} \le \frac{1 + |\cos x|}{x^2} \le \frac{2}{x^2},$$

avec $\int_{1}^{+\infty} \frac{\mathrm{d}x}{x^2}$ convergente (c'est une intégrale de Riemann $\int_{1}^{+\infty} \frac{\mathrm{d}x}{x^x}$ avec $\alpha = 2 > 1$), donc, par comparaison, $\int_{1}^{+\infty} \frac{1 - \cos x}{x^2} \, \mathrm{d}x$ est convergente.

b) Posons $f(x) = \frac{1}{x(x+2)}$. La fonction f est continue sur $\mathbb{R}\setminus\{-2,0\}$ donc sur [-1;0[. Pour étudier la convergence de l'intégrale, il suffit donc de regarder ce qui se passe au voisinage de 0. Soit $-1 < \varepsilon < 0$, on doit étudier

$$\int_{-1}^{\varepsilon} \frac{\mathrm{d}x}{x(x+2)}.$$

Cherchons λ et μ tels que $\frac{1}{x(x+2)} = \frac{\lambda}{x} + \frac{\mu}{x+2}$:

$$\frac{1}{x(x+2)} = \frac{\lambda}{x} + \frac{\mu}{x+2} \Longleftrightarrow \frac{1}{x(x+2)} = \frac{\lambda(x+2) + \mu x}{x(x+2)} = \frac{(\lambda + \mu)x + 2\lambda}{x(x+2)}$$
$$\iff \begin{cases} \lambda + \mu = 0 \\ 2\lambda = 1 \end{cases} \iff \lambda = \frac{1}{2} \quad \text{et} \quad \mu = -\frac{1}{2}$$

Ainsi, $\frac{1}{x(x+2)} = \frac{1}{x} + -\frac{1}{2}\frac{1}{x+2}$ et donc :

$$\begin{split} \int_{-1}^{\varepsilon} \frac{\mathrm{d}x}{x(x+2)} &= \frac{1}{2} \int_{-1}^{\varepsilon} \frac{\mathrm{d}x}{x} - \frac{1}{2} \int_{-1}^{\varepsilon} \frac{\mathrm{d}x}{x+2} = \frac{1}{2} [\ln|x|]_{-1}^{\varepsilon} - \frac{1}{2} [\ln|x+2|]_{-1}^{\varepsilon} \\ &= \frac{1}{2} (\ln|\varepsilon| - \ln 1) - \frac{1}{2} (\ln|\varepsilon + 2| - \ln 1) = \frac{1}{2} \ln|\varepsilon| - \frac{1}{2} \ln|\varepsilon + 2| \underset{\varepsilon \to 0}{\longrightarrow} -\infty, \end{split}$$

donc l'intégrale $\int_{-1}^{0} \frac{\mathrm{d}x}{x(x+2)} \mathrm{d}x$ diverge.

<u>AUTRE MÉTHODE</u> : Si $-1 \le x \le 0$, on a $1 \le x + 2 \le 2$ d'où $\frac{1}{2} \le \frac{1}{x+2} \le 1$ et donc

$$\left| \frac{1}{x(x+2)} \right| \ge \frac{1}{2} \frac{1}{|x|}$$

Puisque l'intégrale $\int_{-1}^{0} \frac{\mathrm{d}x}{|x|}$ est divergente (c'est une intégrale de Riemann), on en déduit que $\int_{-1}^{0} \frac{dx}{x(x+2)}$ diverge par comparaison

c) Posons $f(x) = \frac{x^2}{x^{17/5} + 1}$. Cette fonction est continue sur $]0; +\infty[$. De plus, si x > 0, on a

$$x^{17/5} + 1 > 1$$

donc le dénominateur ne s'annule jamais. Pour étudier la convergence de l'intégrale, il suffit donc d'étudier le comportement au voisinage de $+\infty$. On a, puisque

$$x^{17/5} + 1 \ge x^{17/5}$$

que

$$\frac{1}{x^{17/5} + 1} \le \frac{1}{x^{17/5}}.$$

Donc

$$\left|\frac{x^2}{x^{17/5}+1}\right| = \frac{x^2}{x^{17/5}+1} \leq \frac{x^2}{x^{17/5}} = \frac{1}{x^{\frac{17}{5}-2}} = \frac{1}{x^{\frac{17}{5}-\frac{10}{5}}} = \frac{1}{x^{7/5}},$$

avec $\int_1^{+\infty} \frac{\mathrm{d}x}{x^{7/5}}$ convergente (c'est une intégrale de Riemann $\int_1^{+\infty} \frac{\mathrm{d}x}{x^a}$ avec $\alpha = \frac{7}{5} > 1$) donc, par comparaison, l'intégrale $\int_0^{+\infty} \frac{x^2}{x^{17/5} + 1} \, \mathrm{d}x$ converge.

d) Posons $f(x) = \frac{e^{\cos x}}{x}$. Cette fonction est continue sur \mathbb{R}^* donc sur $]-\infty;-1]$. Pour étudier la convergence de l'intégrale, il suffit donc d'étudier le comportement au voisinage de $-\infty$. Puisque $-1 \le \cos x \le 1$, on a $e^{-1} \le e^{\cos x} \le e$. Pour tout x < -1, nous avons donc

$$\frac{e^{-1}}{x} \ge \frac{e^{\cos x}}{x} \ge \frac{e}{x},$$

avec $\int_{-\infty}^{-1} \frac{e}{x} \cdot dx$ divergente (c'est une intégrale de Riemann $\int_{-\infty}^{-1} \frac{dx}{x^{\alpha}}$ avec $\alpha = 1$ qui n'est pas > 1) donc, par comparaison, l'intégrale $\int_{-\infty}^{-1} \frac{e^{\cos x}x}{x} dx$ diverge.

e) Le polynôme $x^2 + 2x + 7$ n'est jamais nul. De plus

$$\left| \frac{\arctan(x)}{x^2 + 2x + 7} \right| \le \frac{\frac{\pi}{2}}{x^2} = \frac{\pi}{2x^2}$$

avec $\int_3^{+\infty} \frac{\pi}{2x^2} dx$ convergente (c'est une intégrale de Riemann $\int_3^{+\infty} \frac{dx}{x^a}$ avec $\alpha = 2 > 1$). Donc $\int_3^{+\infty} \frac{\arctan(x)}{x^2 + 2x + 7} dx$ converge absolument.

f) En effectuant le changement de variable $u = \ln(x)$, nous pouvons écrire

$$\int \frac{dx}{x(\ln(x))^2} = \int \frac{du}{u^2} = -\frac{1}{u} = -\frac{1}{\ln(x)} \implies \int_2^{+\infty} \frac{dx}{x(\ln(x))^2} = \left[-\frac{1}{\ln(x)} \right]_2^{+\infty} = \frac{1}{\ln(2)}.$$

Donc
$$\int_{2}^{+\infty} \frac{dx}{x(\ln(x))^2}$$
 converge.

Exercice 2. Étudier pour quelles valeurs de $n \in \mathbb{N}$, l'intégrale

$$I(n) = \int_{1}^{+\infty} \frac{\ln x}{x^n} dx$$

converge et calculer I(n) dans ce cas.

Solution : Rappelons que l'intégrale de Bertrand $\int_1^\infty \frac{dx}{x^\alpha (\ln x)^\beta}$ converge si et seulement si $\alpha > 1$ ou $\alpha = 1$ et $\beta > 1$. Ainsi $\int_1^\infty \frac{dx}{x^n (\ln x)^{-1}}$ qui converge si et seulement si $n \ge 2$.

Si $n \ge 2$, intégrons par parties $\int \frac{\ln x}{x^n} dx$. On a

$$\int \frac{\ln x}{x^n} dx = \frac{x^{-n+1}}{-n+1} \ln x - \int \frac{x^{-n+1}}{-n+1} \frac{1}{x} dx = \frac{x^{-n+1}}{-n+1} \ln x - \frac{x^{-n+1}}{(n-1)^2},$$

et donc

$$I(n) = \left[\frac{x^{-n+1}}{-n+1} \ln x - \frac{x^{-n+1}}{(n-1)^2} \right]_1^{\infty} = \frac{1}{(n-1)^2}.$$

Exercice 3. Étudier la nature des intégrales :

$$I = \int_{2}^{+\infty} \left(1 - \cos\left(\frac{1}{t}\right) \right) dt \quad ; \quad J = \int_{0}^{1} \sin\left(\frac{1}{t}\right) dt \quad ; \quad K = \int_{\frac{2}{\pi}}^{+\infty} \ln\left(\cos\left(\frac{1}{t}\right)\right) dt.$$

Solution:

 $I = \int_{2}^{+\infty} \left(1 - \cos\left(\frac{1}{t}\right)\right) dt$: Il y a un problème en $+\infty$. En effectuant un développement limite en $+\infty$, nous avons

$$1 - \cos\left(\frac{1}{t}\right) = 1 - \left(1 - \frac{\left(\frac{1}{t}\right)^2}{2!} + o\left(\frac{1}{t^2}\right)\right) = \frac{1}{2t^2} + o\left(\frac{1}{t^2}\right) \sim \frac{1}{2t^2}.$$

Or $\int_2^{+\infty} \frac{1}{2t^2} dt$ est une intégrale de Riemann avec $\alpha=2>1$. L'intégrale I converge.

 $J = \int_0^1 \sin\left(\frac{1}{t}\right) dt : \text{Il y a un problème en 0, mais attention on ne peut pas faire de développement}$ limité de $t \to \sin\left(\frac{1}{t}\right)$ car la variable $\frac{1}{t}$ tend vers l'infini. Pout tout $0 < \epsilon < 1$, on pose $J(\epsilon) = \int_{\epsilon}^1 \sin\left(\frac{1}{t}\right) dt$, puis on fait le changement de variable

$$u = \frac{1}{t} \Longleftrightarrow t = \frac{1}{u}, \ dt = -\frac{du}{u^2}. \quad \text{De plus } t = \epsilon \Longrightarrow u = \frac{1}{\epsilon} \text{ et } t = 1 \Longrightarrow u = 1$$

Ainsi

$$J(\epsilon) = \int_{\epsilon}^{1} \sin\left(\frac{1}{t}\right) dt = \int_{1}^{\frac{1}{\epsilon}} \sin(u) \left(-\frac{du}{u^{2}}\right) = -\int_{1}^{\frac{1}{\epsilon}} \frac{\sin(u)}{u^{2}} du.$$

Maintenant, $\frac{1}{\epsilon} \to +\infty$, il s'agit donc de voir si la fonction $u \to \frac{\sin(u)}{u^2}$ est intégrable en $+\infty$. Nous avons

$$\left|\frac{\sin(u)}{u^2}\right| \le \frac{1}{u^2}$$

Or $\int_2^{+\infty} \frac{1}{u^2} du$ est une intégrale de Riemann avec $\alpha = 2 > 1$. Donc la fonction $u \to \frac{\sin(u)}{u^2}$ est absolument intégrable en $+\infty$ donc intégrable et J converge.

 $K = \int_{\frac{2}{\pi}}^{+\infty} \ln\left(\cos\left(\frac{1}{t}\right)\right) dt$: Attention il y a deux problèmes, un en $\frac{2}{\pi}$ parce que $\cos\left(\frac{2}{\frac{2}{\pi}}\right) = \cos\left(\frac{\pi}{2}\right) = 0$ et un autre en $+\infty$. Soit $a > \frac{2}{\pi}$, en $\frac{2}{\pi}$ on pose

$$u = t - \frac{2}{\pi} \Longleftrightarrow t = u + \frac{2}{\pi}, \ dt = du$$
 De plus $t = \frac{2}{\pi} \Longrightarrow u = 0$ et $t = a \Longrightarrow u = a - \frac{2}{\pi}$

alors

$$\ln\left(\cos\left(\frac{1}{t}\right)\right) = \ln\left(\cos\left(\frac{1}{u+\frac{2}{\pi}}\right)\right) = \ln\left(\cos\left(\frac{1}{\frac{2}{\pi}\left(1+\frac{\pi}{2}u\right)}\right)\right) = \ln\left(\cos\left(\frac{\pi}{2}\frac{1}{1+\frac{\pi}{2}u}\right)\right)$$

$$= \ln\left(\cos\left(\frac{\pi}{2}\left(1-\frac{\pi}{2}u+o(u)\right)\right)\right) = \ln\left(\cos\left(\frac{\pi}{2}-\frac{\pi^2}{4}u+o(u)\right)\right)$$

$$= \ln\left(\sin\left(\frac{\pi^2}{4}u+o(u)\right)\right) = \ln\left(\frac{\pi^2}{4}u+o(u)\right) = \ln\left(\frac{\pi^2}{4}u+o(u)\right)$$

Or pour tout $a > \frac{2}{\pi}$, nous avons

$$\int_0^{a-\frac{2}{\pi}} \ln(u) du = \left[u \ln(u) - u \right]_0^{a-\frac{2}{\pi}}$$
$$= (a - \frac{2}{\pi}) \ln\left(a - \frac{2}{\pi}\right) - (a - \frac{2}{\pi}).$$

Donc $\int_{\frac{2}{\pi}}^{a} \ln\left(\cos\left(\frac{1}{t}\right)\right) dt$ converge. Finalement, en $+\infty$, nous avons

$$\ln\left(\cos\left(\frac{1}{t}\right)\right) = \ln\left(1 - \frac{\left(\frac{1}{t}\right)^2}{2!} + o\left(\frac{1}{t^2}\right)\right) = -\frac{1}{2t^2} + o\left(\frac{1}{t^2}\right) \sim -\frac{1}{2t^2}$$

Or pour tout $a>\frac{2}{\pi}$ nous avons que $\int_a^{+\infty}-\frac{1}{t^2}dt$ est une intégrale de Riemann avec $\alpha=2>1$. Par conséquent, K converge.

Exercice 4. Déterminer pour quelles valeurs du couple $(\alpha, \beta) \in \mathbb{R}^2$ les intégrales suivantes sont convergentes :

$$\int_0^{+\infty} \frac{dx}{x^{\alpha}(1+x^{\beta})} \quad ; \quad \int_0^{+\infty} \frac{\ln(1+x^{\alpha})}{x^{\beta}} dx.$$

Solution:

 $\int_0^{+\infty} \frac{dx}{x^{\alpha}(1+x^{\beta})}$: Cherchons un équivalent simple en 0 et en $+\infty$ de la fonction f définie sur $]0,\infty[$

$$f(x) = \frac{1}{x^{\alpha} \left(1 + x^{\beta}\right)}$$

Le résultat dépend du signe de β . On peut résumer ce que l'on obtient dans le tableau suivant :

	$\sim f(x)$ en 0	$\sim f(x)$ en $+\infty$	condition de convergence de $\int_{0}^{1} f(x) dx$	condition de convergence de $\int_{1}^{\infty} f(x) dx$
$\beta > 0$	$\frac{1}{x^{\alpha}}$	$\frac{1}{x^{\alpha+\beta}}$	$\alpha < 1$	$\alpha + \beta > 1$
$\beta = 0$	$\frac{1}{2x^{\alpha}}$	$\frac{1}{2x^{\alpha}}$	$\alpha < 1$	$\alpha > 1$
$\beta < 0$	$\frac{1}{x^{\alpha+\beta}}$	$\frac{1}{x^{\alpha}}$	$\alpha + \beta < 1$	$\alpha > 1$

L'ensemble des couples (α, β) pour les quels l'intégrale $\int_0^\infty f(x)dx$ est le domaine du plan limité par les droites d'équation $\alpha+\beta=1$ et $\alpha=1$ (exclues). On ne peut jamais avoir $\beta=0$.

 $\int_0^{+\infty} \frac{\ln(1+x^\alpha)}{x^\beta} dx: \text{ Même méthode. Les équivalents dépendent du signe de α cette fois. Remarquons que si $\alpha>0, x^\alpha$ tend vers 0 en 0 donc}$

$$\ln\left(1+x^{\alpha}\right) \sim x^{\alpha}$$

et si $\alpha < 0$, on peut écrire

$$\ln (1 + x^{\alpha}) = \ln (x^{\alpha}) + \ln (1 + x^{-\alpha})$$
$$= \alpha \ln x \left(1 + \frac{\ln (1 + x^{-\alpha})}{\alpha \ln x} \right)$$

et donc

$$\ln\left(1+x^{\alpha}\right) \sim \alpha \ln x.$$

On a des résultats inversés en $+\infty$. On peut résumer ce que l'on obtient dans le tableau suivant :

	$\sim f(x)$ en 0	$\sim f(x)$ en $+\infty$	condition de convergence de $\int_{0}^{1} f(x) dx$	condition de convergence de $\int_{1}^{\infty} f(x) dx$
$\alpha > 0$	$\frac{1}{x^{\beta-\alpha}}$	$\alpha \frac{\ln x}{x^{\beta}}$	$\beta - \alpha < 1$	$\beta > 1$
$\alpha = 0$	$\frac{\ln 2}{x^{\beta}}$	$\frac{\ln 2}{x^\beta}$	$\beta < 1$	$\beta > 1$
$\alpha < 0$	$\alpha \frac{\ln x}{x^{\beta}}$	$\frac{1}{x^{\beta-\alpha}}$	$\beta < 1$	$\beta - \alpha > 1$

L'ensemble des couples (α, β) pour les quels l'intégrale $\int_0^\infty f(x)dx$ est le domaine du plan limité par les droites d'équation $\beta - \alpha = 1$ et $\beta = 1$ (exclues). On ne peut jamais avoir $\alpha = 0$.

Exercice 5. Étudier la nature des intégrales :

$$I = \int_0^1 \frac{dx}{1 - \sqrt{x}}$$
 ; $J = \int_0^{+\infty} \frac{e^{-x} - e^{-2x}}{x} dx$.

Solution:

 $I=\int_0^1 \frac{dx}{1-\sqrt{x}}$: La fonction $\frac{1}{1-\sqrt{x}}$ est continue sur [0,1[. Le problème de convergence de l'intégrale est donc en 1. Pour étudier ce problème, on fait un développement limité en 1 en posant x=1+u. Lorsque x tend vers 1, u tend vers 0. De plus,

$$1 - \sqrt{x} = 1 - \sqrt{1+u} = 1 - (1 + \frac{u}{2} + o(u)) = -\frac{u}{2} + o(u)$$

et donc

$$1 - \sqrt{x} \sim \frac{1 - x}{2}.$$

La fonction est donc équivalente en 1 à $\frac{2}{1-x}$. Cette dernière fonction n'est pas intégrable (c'est une intégrale de Riemann divergente), on en déduit que $\int_0^1 \frac{dx}{1-\sqrt{x}}$ est divergente.

 $J=\int_{0}^{+\infty}\frac{e^{-x}-e^{-2x}}{x}dx$: En effectuant un développement limité en 0 , on a

$$e^{-t} - e^{-2t} = 1 - t - (1 - 2t) + \circ(t) = t + \circ(t)$$

donc

$$\lim_{t \to 0} \frac{e^{-t} - e^{-2t}}{t} = 1$$

et la fonction se prolonge par continuité en 0. Il en résulte que l'intégrale $\int_0^1 \frac{e^{-t}-e^{-2t}}{t}dt$ converge. D'autre part, si $t\geq 1$, on a

$$0 \le \frac{e^{-t}}{t} \le e^{-t}$$
 et $0 \le \frac{e^{-2t}}{t} \le e^{-2t}$

et puisque les intégrales $\int_1^\infty e^{-t}dt$ et $\int_1^\infty e^{-2t}dt$ convergent, les intégrales $\int_1^\infty \frac{e^{-t}}{t}dt$ et $\int_1^\infty \frac{e^{-2t}}{t}dt$ convergent également. Donc l'intégrale $\int_1^\infty \frac{e^{-t}-e^{-2t}}{t}dt$ converge.