

TD3 - ALGÈBRE BILINÉAIRE

Formes bilinéaires

Exercice 1 (Forme bilinéaire antisymétrique)

Soit φ la forme sur $\mathbb{R}^2 \times \mathbb{R}^2$ définie pour tout $x = (x_1, x_2) \in \mathbb{R}^2$ et $y = (y_1, y_2) \in \mathbb{R}^2$ par :

$$\varphi(x,y) = x_1 y_2 - x_2 y_1$$

- 1) Montrer que φ est anti-symétrique. φ est-elle symétrique ?
- 2) Montrer que φ est bilinéaire.

Exercice 2 (Forme de LORENTZ)

Soit c>0 un paramètre réel et $\varphi:\mathbb{R}^4\times\mathbb{R}^4\to\mathbb{R}$ définie pour tout $x=(x_1,x_2,x_3,x_4)\in\mathbb{R}^4$ et $y=(y_1,y_2,y_3,y_4)\in\mathbb{R}^4$ par :

$$\varphi(x,y) = x_1y_1 + x_2y_2 + x_3y_3 - c^2x_4y_4$$

- 1) Montrer que φ est une forme bilinéaire symétrique sur \mathbb{R}^4 .
- 2) φ est-elle positive? définie?
- 3) On note $\mathcal{B} = (e_1, e_2, e_3, e_4)$ la base canonique de \mathbb{R}^4 . Donner la matrice de φ dans \mathcal{B} .

Exercice 3

Déterminer la forme bilinéaire φ sur \mathbb{R}^3 de matrice A dans la base canonique de \mathbb{R}^3 .

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \\ 3 & 4 & 5 \end{pmatrix}$$

Exercice 4 (Matrice d'une forme bilinéaire)

Considérons la forme bilinéaire sur \mathbb{R}^2 : $\forall x = (x_1, x_2), y = (y_1, y_2) \in \mathbb{R}^2$

$$\varphi(x,y) = 5x_1y_1 + 7x_1y_2 + 7x_2y_1 + 10x_2y_2$$

- 1) Déterminer la matrice de φ dans la base canonique \mathcal{B} de \mathbb{R}^2 . φ est-elle symétrique ?
- 2) Soit $\mathcal{B}' = (v_1, v_2)$ avec $v_1 = (3, -2)$ et $v_2 = (-1, 1)$. Déterminer la matrice de φ dans la base \mathcal{B}' . Donner l'expression de φ par rapport à \mathcal{B}' .

Exercice 5

 \mathbb{R}^3 est rapporté à sa base canonique $\mathcal{B}=(e_1,e_2,e_3)$. Soit f la forme bilinéaire sur \mathbb{R}^3 définie par : $\forall x=(x_1,x_2,x_3)\in\mathbb{R}^3$ et $\forall y=(y_1,y_2,y_3)\in\mathbb{R}^3$:

$$f(x,y) = x_1y_1 + 6x_2y_2 + 56x_3y_3 - 2(x_1y_2 + x_2y_1) + 7(x_1y_3 + x_3y_1) - 18(x_2y_3 + x_3y_2)$$

- 1) Donner la matrice A de f par rapport à la base \mathcal{B} .
- 2) Soit:

$$e'_1 = e_1 \; ; \; e'_2 = 2e_1 + e_2 \; ; \; e'_3 = -3e_1 + 2e_2 + e_3$$

Montrer que $\mathcal{B}'=(e_1',e_2',e_3')$ est une base de \mathbb{R}^3 .

3) Donner la matrice A' de f par rapport à \mathcal{B}' . Donner l'expression de f par rapport à \mathcal{B}' .

4) Soit q la forme quadratique associé à f, i.e. :

$$q(x) = f(x, x) \quad \forall x \in \mathbb{R}^3$$

- a) Donner l'expression de q(x) par rapport aux composantes de x dans chacune des bases \mathcal{B} et \mathcal{B}' .
- b) f est-elle positive? définie?

Exercice 6

Soit E un \mathbb{R} -ev. Montrer que

$$\mathcal{L}_{2,s}(E \times E; \mathbb{R}) \oplus \mathcal{L}_{2,a}(E \times E; \mathbb{R}) = \mathcal{L}_2(E \times E; \mathbb{R})$$

Formes bilinéaires - Exercices supplémentaires

Exercice 7 (Matrice d'une forme bilinéaire)

Considérons la forme bilinéaire sur \mathbb{R}^2 : $\forall x = (x_1, x_2), y = (y_1, y_2) \in \mathbb{R}^2$

$$\varphi(x,y) = -2x_1y_2 + 2x_2y_1$$

- 1) Déterminer la matrice de φ dans la base canonique \mathcal{B} de \mathbb{R}^2 . φ est-elle antisymétrique ?
- 2) Soit $\mathcal{B}' = (v_1, v_2)$ avec $v_1 = (1, -1)$ et $v_2 = (1, 1)$. Déterminer la matrice de φ dans la base \mathcal{B}' . Donner l'expression de φ par rapport à \mathcal{B}' .

Exercice 8

Considérons les formes bilinéaires sur \mathbb{R}^n suivantes :

- 1) n = 2 et $\varphi(x, y) = x_1y_1 2x_2y_2$.
- 2) n = 3 et $\varphi(x, y) = x_1y_1 x_1y_2 x_2y_2 2x_2y_3 x_3y_1 2x_3y_3$.
- 3) n = 3 et $\varphi(x, y) = x_1y_1 3x_2y_2 x_3y_3$.
- 4) n = 3 et $\varphi(x, y) = -x_1y_2 2x_1y_3 + x_2y_1 3x_2y_3 + 2x_3y_1 + 3x_3y_2$.

Déterminer la matrice A dans la base canonique de \mathbb{R}^n de chacune des $f.b. \varphi$.

A partir de A, φ est-elle symétrique? antisymétrique?

Si φ est symétrique, φ est-elle positive ? définie ?

Exercice 9 (Forme sur un espace de dimension infinie)

Note : Soit $I \subset \mathbb{R}$ un intervalle.

L'intégrale sur I, de toute fonction continue et positive sur I, existe toujours. Elle est finie ou infinie.

1) Soit $E = \mathcal{C}(\mathbb{R}, \mathbb{R})$. On définit l'application φ sur E par

$$\varphi(f) = \int_0^{+\infty} |f(x)| e^{-x} dx \quad \forall f \in E$$

 φ est-elle une forme sur E?

2) Soit $E = \mathbb{R}[X]$. On définit l'application φ sur E par

$$\varphi(f) = \int_0^{+\infty} P(x)e^{-x}dx \quad \forall P \in E$$

 φ est-elle une forme sur E ? Si oui, est-elle linéaire ?

Espaces Préhilbertiens

Exercice 10

Pour tout $x = (x_1, x_2, x_3) \in \mathbb{R}^3$ et $y = (y_1, y_2, y_3) \in \mathbb{R}^3$, on pose :

$$\varphi(x,y) = (x_1 - 2x_2)(y_1 - 2y_2) + x_2y_2 + (x_2 + x_3)(y_2 + y_3)$$

Montrer que φ est un produit scalaire sur \mathbb{R}^3 .

Exercice 11

Montrer que l'application φ suivante est un produit scalaire sur $\mathbb{R}[x]$:

$$\varphi(P,Q) = \int_0^1 P(x)Q(x) \ dx \quad \forall P,Q \in \mathbb{R}[x]$$

Exercice 12

Soit $n \in \mathbb{N}$. Montrer que la forme φ suivante est un produit scalaire sur $\mathbb{R}_n[x]$:

$$\varphi(P,Q) = \sum_{k=0}^{n} P(k)Q(k) \quad \forall P, Q \in \mathbb{R}_n[x]$$

Exercice 13

Soit $E = \mathcal{C}([-1,1],\mathbb{R})$. Pour tout $f,g \in E$, on pose

$$\varphi(f,g) = \int_{-1}^{1} f(t)g(t)(1-t^2) dt$$

Montrer que φ définit un produit scalaire sur E.

Exercice 14

Soit $E = \mathcal{C}^1([0,1],\mathbb{R})$. Pour tout $f,g \in E$, on pose

$$\varphi(f,g) = f(0)g(0) + \int_0^1 f'(t)g'(t) dt$$

Montrer que φ est un produit scalaire sur E.

Exercice 15 (Inégalité de Schwarz)

En utilisant l'inégalité de SCHWARZ, démontrer les inégalités ci-dessous et en étudier les cas d'égalité. Pour chaque cas, préciser l'espace préhilbertien $(E, \langle . \, , . \rangle)$ dans lequel on travaille et les vecteurs de E concernés.

- 1) $\forall (x_1, \dots, x_n) \in \mathbb{R}^n : (x_1 + \dots + x_n)^2 \le n(x_1^2 + \dots + x_n^2).$
- 2) $\forall (x_1, \dots, x_n) \in (\mathbb{R}^{*+})^n : (x_1 + \dots + x_n) \left(\frac{1}{x_1} + \dots + \frac{1}{x_n} \right) \ge n^2.$
- 3) $\forall M \in \mathcal{M}_n(\mathbb{R}) : (tr(M))^2 \leq n \ tr(M^T M).$
- 4) Pour toute fonction f continue et strictement positive sur [a,b], avec $a,b \in \mathbb{R}$ et a < b:

$$\left(\int_{a}^{b} f(x)dx\right)\left(\int_{a}^{b} \frac{1}{f(x)}dx\right) \ge (b-a)^{2}$$

Exercice 16 (Norme euclidienne)

Sur \mathbb{R}^2 , on définit les fonctions suivantes

$$||x||_1 = |x_1| + |x_2|$$
; $||x||_2 = \sqrt{x_1^2 + x_2^2}$ $\forall x = (x_1, x_2) \in \mathbb{R}^2$

- 1) a) Vérifier que $\|.\|_1$ est une norme sur \mathbb{R}^2 .
 - b) Montrer que $\|.\|_1$ n'est pas une norme euclidienne.
- 2) a) Vérifier que $\|.\|_2$ est une norme sur \mathbb{R}^2 .

 Indication: Pour $x, y \in \mathbb{R}^2$ fixés, étudier le discriminant de la fonction polynomiale de degré 2 définie pour tout $t \in \mathbb{R}$ par

$$f(t) = ||x + ty||_2^2, \ \forall t \in \mathbb{R}$$

b) Montrer que $\|.\|_2$ est une norme euclidienne et déterminer le produit scalaire associé.

Exercice 17 (Orthogonalité)

 $\mathcal{M}_2(\mathbb{R})$ est muni de son produit scalaire usuel :

$$\langle A, B \rangle = tr(A^T B) ; \quad \forall A, B \in \mathcal{M}_3(\mathbb{R})$$

Soit
$$A = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$$
 et $B = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$

- 1) Montrer que $A \perp B$.
- 2) Déterminer le s.e.v. $\{A\}^{\perp}$ et donner sa dimension.

Exercice 18 (Base orthonormale | Espace \mathbb{R}^4)

 \mathbb{R}^4 est muni de son produit scalaire usuel. Soit

$$\varepsilon_1 = \frac{1}{2}(1, 1, 1, 1) \; ; \; \varepsilon_2 = \frac{1}{2}(1, -1, 1, -1) \; ; \; \varepsilon_3 = \frac{1}{2}(1, 1, -1, -1)$$

- a) Montrer que la famille $\{\varepsilon_1, \varepsilon_2, \varepsilon_3\}$ est orthonormale.
- b) Déterminer les vecteurs ε_4 tels que la famille $\{\varepsilon_1, \varepsilon_2, \varepsilon_3, \varepsilon_4\}$ soit une base orthonormale de \mathbb{R}^4 .

Exercice 19 (Supplémentaire orthogonal)

Considérons l'espace euclidien usuel $(\mathcal{M}_{4,1}(\mathbb{R}), \langle ., . \rangle)$. Soit

$$U_1 = \begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \end{pmatrix} \quad ; \quad U_2 = \begin{pmatrix} 0 \\ 0 \\ 1 \\ 1 \end{pmatrix} \quad ; \quad V_1 = \begin{pmatrix} 1 \\ -1 \\ 0 \\ 0 \end{pmatrix} \quad ; \quad V_2 = \begin{pmatrix} 0 \\ 0 \\ 1 \\ -1 \end{pmatrix}$$

- 1) On pose $E_1 = Vect\{U_1, U_2\}$ et $E_2 = Vect\{V_1, V_2\}$. Montrer que $E = E_1 \stackrel{\perp}{\oplus} E_2$.
- 2) La famille $\{U_1, U_2, V_1, V_2\}$ est-elle une base orthogonale de $\mathcal{M}_{4,1}(\mathbb{R})$?

Exercice 20 (Supplémentaire et orthogonalité)

Soit $(E, \langle ., . \rangle)$ un espace euclidien. Soit E_1 et E_2 deux s.e.v. supplémentaires dans E. Montrer que $E = E_1^{\perp} \oplus E_2^{\perp}$.

Espaces Préhilbertiens - Exercices supplémentaires

Exercice 21

Soit E un \mathbb{R} -ev non réduit à $\{0_E\}$, φ un produit scalaire sur E, $(a,b,c) \in \mathbb{R}^3$ et ψ la forme sur $E \times E$ définie par : $\forall x,y \in E$:

$$\psi(x,y) = a\varphi(x,x) + b\varphi(x,y) + c\varphi(y,y)$$

Donner une condition nécessaire et suffisante sur (a,b,c) pour que ψ soit un produit scalaire sur E.

Exercice 22 (Famille orthonormale | Espace de fonctions)

Soit $E = \mathcal{C}([0,1],\mathbb{R})$, le \mathbb{R} -ev des fonctions continues sur le segment [a,b] et à valeurs réelles. Soit $\varphi : E \times E \to \mathbb{R}$ définie par :

$$\varphi(f,g) = \int_0^1 f(t)g(t) dt \quad \forall f,g \in E$$

- 1) Montrer que φ est un produit scalaire sur E.
- 2) Considérons la suite de fonctions définie par :

$$\forall n \in \mathbb{N}^* \quad f_n : t \in [0, 1] \mapsto \cos(2\pi nt)$$

Montrer que $\{f_n\}_{n\in\mathbb{N}^*}$ est une famille orthogonale. Est-elle orthonormale ?

3) On pose $g_n = \sqrt{2}f_n$. Montrer que la famille $\{g_n\}_{n \in \mathbb{N}^*}$ est orthonormale.

Rappel.
$$\cos a \cos b = \frac{1}{2} (\cos(a+b) + \cos(a-b))$$

Exercice 23 (Base orthogonale | Espace de polynômes)

Déterminer une base orthogonale de $\mathbb{R}_2[X]$ pour le produit scalaire

$$\langle P, Q \rangle = \int_0^1 P(x)Q(x) \ dx \quad \forall P, Q \in \mathbb{R}_2[X]$$

Exercice 24 (Base orthonormale | Espace de matrices)

 $\mathcal{M}_3(\mathbb{R})$ est muni de son produit scalaire usuel :

$$\langle A, B \rangle = tr(A^T B) ; \quad \forall A, B \in \mathcal{M}_3(\mathbb{R})$$

Déterminer une base orthonormale du s.e.v. F de $\mathcal{M}_3(\mathbb{R})$ engendré par les matrices

$$J = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \quad ; \quad K = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix} \quad ; \quad L = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$