Feuille d'exercices

Forme bilinéaire

Exercice 1 - Forme linéaire sur \mathbb{R}^n φ est une application sur \mathbb{R}^n .

1) Montrer que φ est une forme linéaire sur \mathbb{R}^n ssi il existe $a_1, \ldots, a_n \in \mathbb{R}$ tels que

$$\varphi(x) = a_1 x_1 + \dots + a_n x_n, \quad \forall x = (x_1, \dots, x_n) \in \mathbb{R}^n$$

- 2) Donner la matrice de φ relativement aux bases canoniques de \mathbb{R}^n et \mathbb{R} .
- 3) On suppose que n=3 et $a_1=a_2=a_3=1$. Déterminer l'hyperplan $H=Ker(\varphi)$.

Exercice 2 - Forme linéaire sur \mathbb{R}^3

Déterminer la forme linéaire f définie sur \mathbb{R}^3 telle que

$$f(1,1,1) = 0$$
; $f(2,0,1) = 1$; $f(1,2,3) = 4$

Donner une base du noyau de f.

Exercice 3 - Forme linéaire sur $\mathcal{M}_n(\mathbb{R}) \mid$ Trace d'une matrice L'application trace est définie sur $\mathcal{M}_n(\mathbb{R})$ par

$$\forall A = [a_{ij}] \in \mathcal{M}_n(\mathbb{R}) \quad tr(A) = \sum_{i=1}^n a_{ii}$$

- 1) Montrer que tr est une forme linéaire sur $\mathcal{M}_n(\mathbb{R})$.
- 2) Montrer que $\forall A, B \in \mathcal{M}_n(\mathbb{R}), tr(AB) = tr(BA).$
- 3) Ici n=2. Soit H=Ker(tr). Donner la dimension de H et déterminer une base de H.

Exercice 4 - Forme bilinéaire antisymétrique

Soit φ la forme sur $\mathbb{R}^2 \times \mathbb{R}^2$ définie pour tout $x = (x_1, x_2) \in \mathbb{R}^2$ et $y = (y_1, y_2) \in \mathbb{R}^2$ par :

$$\varphi(x,y) = x_1 y_2 - x_2 y_1$$

- 1) Montrer que φ est anti-symétrique. φ est-elle symétrique ?
- 2) Montrer que φ est bilinéaire.

Exercice 5 - Forme de LORENTZ

Soit c>0 un paramètre réel et $\varphi:\mathbb{R}^4\times\mathbb{R}^4\to\mathbb{R}$ définie pour tout $x=(x_1,x_2,x_3,x_4)\in\mathbb{R}^4$ et $y=(y_1,y_2,y_3,y_4)\in\mathbb{R}^4$ par :

$$\varphi(x,y) = x_1y_1 + x_2y_2 + x_3y_3 - c^2x_4y_4$$

- 1) Montrer que φ est une forme bilinéaire symétrique sur \mathbb{R}^4 .
- 2) φ est-elle positive? définie?
- 3) On note $\mathcal{B} = (e_1, e_2, e_3, e_4)$ la base canonique de \mathbb{R}^4 . Donner la matrice de φ dans \mathcal{B} .

Exercice 6 - Déterminer la forme bilinéaire φ sur \mathbb{R}^3 de matrice A dans la base canonique de \mathbb{R}^3 .

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \\ 3 & 4 & 5 \end{bmatrix}$$

Exercice 7 - Matrice d'une forme bilinéaire

Considérons la forme bilinéaire sur \mathbb{R}^2 : $\forall x = (x_1, x_2), y = (y_1, y_2) \in \mathbb{R}^2$

$$\varphi(x,y) = 5x_1y_1 + 7x_1y_2 + 7x_2y_1 + 10x_2y_2$$

- 1) Déterminer la matrice de φ dans la base canonique \mathcal{B} de \mathbb{R}^2 . φ est-elle symétrique ?
- 2) Soit $\mathcal{B}' = (v_1, v_2)$ avec $v_1 = (3, -2)$ et $v_2 = (-1, 1)$. Déterminer la matrice de φ dans la base \mathcal{B}' . Donner l'expression de φ par rapport à \mathcal{B}' .

Exercice 8 - Matrice d'une forme bilinéaire

Considérons la forme bilinéaire sur \mathbb{R}^2 : $\forall x = (x_1, x_2), y = (y_1, y_2) \in \mathbb{R}^2$

$$\varphi(x,y) = -2x_1y_2 + 2x_2y_1$$

- 1) Déterminer la matrice de φ dans la base canonique \mathcal{B} de \mathbb{R}^2 . φ est-elle antisymétrique?
- 2) Soit $\mathcal{B}' = (v_1, v_2)$ avec $v_1 = (1, -1)$ et $v_2 = (1, 1)$. Déterminer la matrice de φ dans la base \mathcal{B}' . Donner l'expression de φ par rapport à \mathcal{B}' .

Exercice 9 - \mathbb{R}^3 est rapporté à sa base canonique $\mathcal{B} = (e_1, e_2, e_3)$. Soit f la forme bilinéaire sur \mathbb{R}^3 définie par : $\forall x = (x_1, x_2, x_3) \in \mathbb{R}^3$ et $\forall y = (y_1, y_2, y_3) \in \mathbb{R}^3$:

$$f(x,y) = x_1y_1 + 6x_2y_2 + 56x_3y_3 - 2(x_1y_2 + x_2y_1) + 7(x_1y_3 + x_3y_1) - 18(x_2y_3 + x_3y_2)$$

- 1) Donner la matrice A de f par rapport à la base \mathcal{B} .
- 2) Soit:

$$e'_1 = e_1 \; ; \; e'_2 = 2e_1 + e_2 \; ; \; e'_3 = -3e_1 + 2e_2 + e_3$$

Montrer que $\mathcal{B}' = (e'_1, e'_2, e'_3)$ est une base de \mathbb{R}^3 .

- 3) Donner la matrice A' de f par rapport à \mathcal{B}' . Donner l'expression de f par rapport à \mathcal{B}' .
- 4) Soit q la forme quadratique associé à f, i.e. :

$$q(x) = f(x, x) \quad \forall x \in \mathbb{R}^3$$

- a) Donner l'expression de q(x) par rapport aux composantes de x dans chacune des bases \mathcal{B} et \mathcal{B}' .
- b) f est-elle positive? définie?

Exercice 10 - Soit E un \mathbb{R} -ev. Montrer que

$$\mathcal{L}_{2,s}(E \times E; \mathbb{R}) \oplus \mathcal{L}_{2,a}(E \times E; \mathbb{R}) = \mathcal{L}_2(E \times E; \mathbb{R})$$

Exercice 11 - Considérons les formes bilinéaires sur \mathbb{R}^n suivantes :

1)
$$n=2$$
 et $\varphi(x,y)=x_1y_1-2x_2y_2$.

2)
$$n = 3$$
 et $\varphi(x, y) = x_1y_1 - x_1y_2 - x_2y_2 - 2x_2y_3 - x_3y_1 - 2x_3y_3$.

3)
$$n = 3$$
 et $\varphi(x, y) = x_1y_1 - 3x_2y_2 - x_3y_3$.

4)
$$n = 3$$
 et $\varphi(x, y) = -x_1y_2 - 2x_1y_3 + x_2y_1 - 3x_2y_3 + 2x_3y_1 + 3x_3y_2$.

Déterminer la matrice A dans la base canonique de \mathbb{R}^n de chacune des $f.b. \varphi$.

A partir de A, φ est-elle symétrique ? antisymétrique ?

Si φ est symétrique, φ est-elle positive? définie?

Exercice 12 - Forme sur un espace de dimension infinie

Note : Soit $I \subset \mathbb{R}$ un intervalle.

L'intégrale sur I, de toute fonction continue et positive sur I, existe toujours. Elle est finie ou infinie.

1) Soit $E = \mathcal{C}(\mathbb{R}, \mathbb{R})$. On définit l'application φ sur E par

$$\varphi(f) = \int_0^{+\infty} |f(x)| e^{-x} dx \quad \forall f \in E$$

 φ est-elle une forme sur E ?

2) Soit $E = \mathbb{R}[X]$. On définit l'application φ sur E par

$$\varphi(f) = \int_0^{+\infty} P(x)e^{-x}dx \quad \forall P \in E$$

 φ est-elle une forme sur E ? Si oui, est-elle linéaire ?