

ALGÈBRE LINÉAIRE ET BILINÉAIRE

Devoir surveillé 3 7 juin 2023

Durée: 90 mn

- ▶ Les documents et les supports électroniques sont interdits.
- ▶ L'épreuve est composée de 3 exercices indépendants.
- ▶ Le barème est à titre indicatif.

Important

- ▶ Veuillez écrire lisiblement votre NOM et votre PRÉNOM et en lettres majuscules.
- ▶ Veuillez également noter le NOM ou le NUMÉRO de votre groupe sur votre copie.

Tout manquement à ces consignes entrainera des sanctions.

Exercice 1. (5 points)

Résoudre le système différentiel linéaire

$$\begin{cases} x' = 5x - 7y + 7z \\ y' = 3x - 3y + 5z \\ z' = 3x - y + 3z \end{cases}$$

Exercice 2. (7 points)

On fixe $a, b \in \mathbb{R}$. Pour tout $x = (x_1, x_2) \in \mathbb{R}^2$ et $y = (y_1, y_2) \in \mathbb{R}^2$ on pose

$$\phi(x,y) = ax_1y_1 + bx_1y_2 + 3x_2y_1 + x_2y_2.$$

- 1. Montrer que pour tout $a, b \in \mathbb{R}$, ϕ est une forme bilinéaire sur $\mathbb{R}^2 \times \mathbb{R}^2$.
- 2. Montrer que ϕ est symétrique si et seulement si b=3.
- 3. On fixe b = 3. Montrer que pour tout $x = (x_1, x_2)$:

$$\phi(x,x) = (a-9)x_1^2 + (3x_1 + x_2)^2.$$

4. En déduire une condition nécessaire et suffisante sur a pour que ϕ soit un produit scalaire.

Dans la suite de l'exercice on fixe a = 13 et b = 3.

5. Montrer que les vecteurs $v_1=(1,1)$ et $v_2=(1,-4)$ sont orthogonaux pour le produit scalaire ϕ .

/ 6. En déduire $\{v_1\}^{\perp}$.

/7. Transformer la base $\mathcal{B} = \{v_1, v_2\}$ en une base orthonormale de \mathbb{R}^2 .

Exercice 3. (8 points)

On considère $E = \mathbb{R}_2[X]$. Pour tout $P, Q \in E$, on pose

$$\langle P, Q \rangle = P(-1)Q(-1) + 2P(0)Q(0) + P(1)Q(1).$$

- 1. Montrer que $\langle \cdot, \cdot \rangle$ est un produit scalaire sur E.

 On notera $\| \cdot \|$ la norme associée au produit scalaire $\langle \cdot, \cdot \rangle$.
- 2. Calculer la norme du polynôme constant P=1. On notera $P_0=\frac{1}{\|1\|}$.
- 3. Montrer que le polynôme P=X est orthogonale à P_0 pour le produit scalaire $\langle\cdot,\cdot\rangle$.
- 4. Calculer ||X||. On notera $P_1 = \frac{X}{||X||}$.
- 5. On pose $Q=X^2-\langle X^2,P_0\rangle P_0-\langle X^2,P_1\rangle P_1$ et $P_2=\frac{Q}{\|Q\|}$. Calculer les coefficients de P_2 .
- 6. Montrer que (P_0,P_1,P_2) forme une base orthonormée de $\mathbb{R}_2[X]$ pour le produit scalaire $\langle\cdot,\cdot\rangle$.