

Algèbre linéaire et bilinéaire

Devoir surveillé 2 | 13 mai 202

□ Consignes ▷

Durée: 90 mn

- ▶ Les documents et les supports électroniques sont interdits.
- ▶ L'épreuve est composée de deux exercices indépendants.

Exercice 1. $(xx \ points)$

On considère la suite $(X_n)_{n\in\mathbb{N}}$ de matrices, éléments de $\mathcal{M}_{2,1}(\mathbb{R})$, définie pour tout $n\in\mathbb{N}$ par

$$X_{n+1} = AX_n + B$$

avec

$$A = \left[\begin{array}{cc} 0 & \frac{1}{2} \\ -\frac{1}{2} & 1 \end{array} \right] \quad ; \quad B = \left[\begin{array}{c} 1 \\ 1 \end{array} \right] \quad ; \quad X_n = \left[\begin{array}{c} x_n \\ y_n \end{array} \right] \quad \text{où} \quad X_0 = \left[\begin{array}{c} x_0 \\ y_0 \end{array} \right] \text{ est donnée}$$

1) Montrer qu'il existe une solution constante à cette suite récurrente, c'est-à-dire, trouver une matrice $X \in \mathcal{M}_{2,1}(\mathbb{R})$ telle que

$$X = AX + B$$

- 2) Pour tout $n \in \mathbb{N}$, on pose $U_n = X_n X$ et on note $U_n = \begin{bmatrix} u_n \\ v_n \end{bmatrix}$
 - a) Justifier que pour tout $n \in \mathbb{N}$, $U_{n+1} = AU_n$.
 - b) Montrer que pour tout $n \in \mathbb{N}$, $U_n = A^n U_0$.
 - c) Calculer A^n , pour tout $n \in \mathbb{N}$.
 - d) Donner en fonction de n, u_0 et v_0 , l'expression des suites réelles $(u_n)_{n\in\mathbb{N}}$ et étudier leur convergence.
- 3) Montrer que la suite $(X_n)_{n\in\mathbb{N}}$ converge vers X.

Exercice 2. $(xx \ points)$

On veut résoudre le système différentiel linéaire non homogène à coefficients constants :

$$\begin{cases} x_1' = -x_1 + x_2 - x_3 + t + 1 \\ x_2' = -4x_1 + 3x_2 - 4x_3 + 4t + 1 \\ x_3' = -2x_1 + x_2 - 2x_3 + 2t + 1 \end{cases}$$

Les inconnues sont les fonctions x_1 , x_2 et x_3 de la variable réelle $t \in \mathbb{R}$.

1) Ecrire ce système sous la forme matricielle

$$X'(t) = AX(t) + B(t) \qquad (I)$$

en précisant les différentes matrices.

- 2) Calculer le polynôme caractéristique de A et donner son expression sous forme factorisée. En déduire que le spectre de A est $Sp(A) = \{-1, 0, 1\}$.
- 3) Déterminer les sous-espaces propres de A.
- 4) Par un changement de variable, montrer que le système (I) est équivalent au système suivant

$$Y'(t) = DY(t) + S(t) \qquad (II)$$

où D est une matrice diagonale et S(t) est une matrice unicolonne à expliciter.

- 5) Résoudre le système (II).
- 6) En déduire X(t), la solution générale du système (I).