

ALGÈBRE LINÉAIRE ET BILINÉAIRE

Devoir surveillé 1 | 31 mars 2022

Durée : 90 mn

Les documents et les supports électroniques sont interdits.

L'épreuve est composée de quatre exercices indépendants.

Exercice 1. (4.5 points)

Soit $n \in \mathbb{N}^*$ et $A \in \mathcal{M}_n(\mathbb{R})$.

- 1) Soit a ∈ R.
 - a) Soit λ∈ R. Montrer que λ est valeur propre de A, si et seulement si, λ−a est valeur propre de A − aIn.
 - b) En déduire le spectre de $A aI_n$ en fonction du spectre de A.
- Soit B ∈ M_n(R), une matrice semblable A A.
 - a) Soit λ ∈ R. Montrer que λ est valeur propre de A si, et seulement si, λ est valeur propre de B. En déduire Sp(A) en fonction de Sp(B).
 - b) La réciproque est-elle vraie : deux matrices de même spectre sont-elles semblables ?

On pourra considérer la matrice $A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$

Exercice 2. (1.5 points)

On considère la matrice $A = \begin{pmatrix} 2 & -1 \\ 1 & 4 \end{pmatrix}$

- Calculer le polynôme caractéristique de A.
- Sans calculer les sous-espaces propres de A, montrer que A n'est pas diagonalisable.

Exercice 3. (7.5 points)

Soit
$$A = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 1 \end{pmatrix} \in \mathcal{M}_3(\mathbb{R})$$

- a) Calculer le polynôme caractéristique de A. En déduire que Sp(A) = {0,1,2}.
 - b) La matrice A est-elle inversible?
 - c) Justifier que A est diagonalisable dans M3(R).

- d) Pour chaque valeur propre de A, déterminer le sous-espace propre correspondant. On donnera une base de chaque sous-espace propre.
- e) Diagonaliser A, en explicitant les matrices P, D (diagonale) et P^{-1} telles que :

$$A = PDP^{-1}$$

Ne pas calculer P^{-1} .

 On note f l'endomorphisme de R³ canoniquement associé à la matrice A. Déterminer les valeurs propres et les sous-espaces propres de f.

Exercice 4. (7 points)

Soit
$$A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & -3 & 3 \end{bmatrix} \in \mathcal{M}_3(\mathbb{R})$$

- 1) Calculer le polynôme caractéristique de A. En déduire que $Sp(A) = \{1\}$.
- Justifier que A est trigonalisable dans M₃(R).
- 3) Trigonaliser A en explicitant les matrices P, T (triangulaire supérieure) et P^{-1} telles que :

$$A = PTP^{-1}$$

4) Calculer P-1.