Cycle préparatoire 2ème année

Devoir surveillé 1

M. Bahtiti, K. Guezguez, B. Laquerriere, J.-M. Masereel

Matière : Algèbre bilinéaire	Date: Jeudi 4 mars 2021
Appareils électroniques et documents interdits	Durée: 1 h 30 min
	Nombre de pages : 2

Il sera tenu compte de la qualité de la rédaction et de la précision des justifications.

Le sujet comporte trois exercices. L'ordre dans lequel ceux-ci sont traités n'est pas imposé.

000

Exercice 1. [9 points]

Les questions sont indépendantes. K désigne \mathbb{R} où \mathbb{C} , E est un K-espace vectoriel de dimension finie n, $\mathbb{B} = (e_1, ..., e_n)$ est une base fixée de E et f un endomorphisme de E.

- 1. Quels sont les valeurs propres de l'endomorphisme nul de E?
- 2. On suppose que la matrice de f dans \mathcal{B} est $M = \begin{pmatrix} 3 & 2 & 4 \\ -1 & 3 & -1 \\ -2 & -1 & -3 \end{pmatrix}$.
 - (a) 2 est-il valeur propre de f?
 - (b) Le vecteur $2e_1 + e_2 + e_3$ est-il un vecteur propre de f?
- 3. Pourquoi un vecteur de E ne peut-il être vecteur propre relativement à deux valeurs propres distinctes?
- 4. (Vrai ou Faux)
 - (a) Est-il vrai que si λ est une valeur propre de f et si P est un polynôme annulateur de f alors λ est racine de P?
 - (b) Est-il vrai que si λ est une racine d'un polynôme annulateur de f alors λ est une valeur propre de f?
- 5. Montrer que si $f^2 2f + Id_E = 0$ alors 1 est valeur propre de f.
- 6. Montrer qu'il existe toujours au moins un scalaire α tel que $f \alpha I d_E$ est bijectif.
- 7. La matrice $M = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ est-elle diagonalisable?
- On considère la matrice

$$A = \left(\begin{array}{cccc} 1 & a & b & c \\ 0 & 1 & d & e \\ 0 & 0 & -1 & f \\ 0 & 0 & 0 & -1 \end{array}\right)$$

Trouver une condition nécessaire et suffisante sur (a, b, c, d, e, f) pour que A soit diagonalisable.

Exercice 2. [5 points]

Soit f l'endomorphisme de $\mathbb{R}_2[X]$, défini, pour tout $P \in \mathbb{R}_2[X]$, par :

$$f(P) = (2X + 1)P - (X^2 - 1)P'$$

- 1. Donner la matrice A de f dans la base canonique de $\mathbb{R}_2[X]$.
- 2. Déterminer le polynôme caractéristique que f.
- 3. Si c'est possible diagonaliser f.

Exercice 3. [10 points]

Soit A la matrice de $\mathcal{M}_3(\mathbb{R})$ suivante :

$$A = \left(\begin{array}{rrr} -3 & 1 & 3 \\ -4 & 1 & 4 \\ -2 & 1 & 2 \end{array}\right)$$

- 1. Déterminer le polyôme caractéristique de A.
- 2. Montrer que A est diagonalisable.
- 3. Déterminer une matrice inversible P et une matrice diagonale D tels que $A = PDP^{-1}$.
- 4. Calculer P⁻¹.
- 5. Exprimer pour tout n la matrice A^n à l'aide de P, D, P^{-1} et n. En déduire que pour tout entier naturel k, $A^{2k+1} = A$ et $A^{2k} = A^2$. Calculer A^2 .
- 6. On considère les trois suites réelles $(u_n)_{n\geqslant 0}$, $(v_n)_{n\geqslant 0}$ et $(w_n)_{n\geqslant 0}$ définies par leur premier terme u_0 , v_0 et w_0 et les relations de récurrence suivantes :

$$\begin{cases} u_{n+1} &= -3u_n + v_n + 3w_n \\ v_{n+1} &= -4u_n + v_n + 4w_n \\ w_{n+1} &= -2u_n + v_n + 2w_n \end{cases}$$

On pose
$$X_n = \begin{pmatrix} u_n \\ v_n \\ w_n \end{pmatrix}$$
.

- (a) Exprimer X_n en fonction de A, n et X_0 .
- (b) En déduire u_n , v_n et w_n en fonction de n.
- 7. On suppose que $X_0 = \begin{pmatrix} 2 \\ 1 \\ 2 \end{pmatrix}$.
 - (a) Déduire de ce qui précède l'expression de $(u_n)_{n\in\mathbb{N}}$, $(v_n)_{n\in\mathbb{N}}$ et $(w_n)_{n\in\mathbb{N}}$.
 - (b) Montrer que dans ce cas, les suites (u_n)_{n∈N}, (v_n)_{n∈N} et (w_n)_{n∈N} sont constantes à partir d'un certain rang à préciser. Quelles sont les limites des suites (u_n)_{n∈N}, (v_n)_{n∈N} et (w_n)_{n∈N}.
- 8. On suppose ici que $X_0 = \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix}$. Exprimer en fonction de la parité de n l'expression des suites $(u_n)_{n \in \mathbb{N}}$, $(v_n)_{n \in \mathbb{N}}$ et $(w_n)_{n \in \mathbb{N}}$. Préciser lesquelles n'ont pas de limite.