

TD2 - SUITES DE FONCTIONS

PARTIE I - CONVERGENCES

Exercice 1

Étudier la convergence simple et la convergence uniforme de la suite de fonctions (f_n) où pour tout $n: f_n: E \to \mathbb{R}$.

1.
$$f_n(x) = \frac{x}{1+nx}$$
, $E = [0,1]$.

2.
$$f_n(x) = \frac{x^n - 1}{x^n + 1}, E = \mathbb{R}_+.$$

3.
$$f_n(x) = \frac{ne^{-x} + x^2}{n+x}$$
, $E = [0,1]$, $n \neq 0$.

4.
$$f_n(x) = e^{-nx} \sin(nx), E = \mathbb{R}_+.$$

5.
$$f_n(x) = \frac{nx}{1 + n^2 x^2}$$
, $E = \mathbb{R}_+$, puis $E = [a, +\infty[$ avec $a > 0$.

Exercice 2

Soit $\alpha \in \mathbb{N}^*$ et (f_n) la suite de fonction définie sur \mathbb{R} par $f_n(x) = \frac{x^{\alpha}}{x^2 + n}$.

- 1. Pour quelles valeurs de α cette suite converge-t-elle uniformément sur $\mathbb R$?
- 2. Pour quelles valeurs de α cette suite converge-t-elle uniformément sur tout intervalle borné de \mathbb{R} ?

Exercice 3

Soit (f_n) une suite de fonctions réelles définies sur un intervalle I de \mathbb{R} , et convergeant simplement sur I vers une fonction f. Que peut-on dire de f si chaque fonction f_n est :

- 1. monotone sur I?
- 2. paire (ou impaire) sur $I = [-a, a], a \in \mathbb{R}$.
- 3. convexe (ou concave) sur I?

On rappelle qu'une fonction est dite convexe sur un intervalle I si elle est vérifie $\forall x, y \in I$, $\forall t \in [0, 1]$, $f(tx + (1 - t)y) \le tf(x) + (1 - t)f(y)$.

Exercice 4

On considère la suite des fonctions (f_n) définies sur [-1,1] par:

$$f_n(x) = \sin(nx)e^{-nx^2} + \sqrt{1-x^2}.$$

- 1. Montrer que la suite (f_n) converge simplement sur [-1,1] vers une fonction f que l'on déterminera.
- 2. Montrer que (f_n) converge uniformément vers f sur tout segment $[\alpha, 1]$ avec $\alpha \in]0, 1[$.
- 3. Montrer que (f_n) ne converge pas uniformément vers f sur [0,1].

Exercice 5

On considère la suite de fonctions (f_n) définie sur \mathbb{R} par

$$f_n(x) = \begin{cases} x^2 \sin\left(\frac{1}{nx}\right) + 1 & \text{si } x \neq 0\\ 1 & \text{si } x = 0 \end{cases}$$

- 1. Montrer que (f_n) converge simplement vers la fonction $f: x \mapsto 1$ sur tout compact de \mathbb{R}
- 2. A-t-on convergence uniforms sur \mathbb{R} ?

Exercice 6

On considère pour $n \in \mathbb{N}^*$ la suite de fonctions (f_n) définie sur $[0, \pi]$ par

$$f_n(x) = \begin{cases} \frac{\sin x}{x(1+nx)} & \text{si } x \neq 0\\ 1 & \text{si } x = 0 \end{cases}$$

- 1. Étudier les convergences simple et uniforme de (f_n) sur $[0,\pi]$.
- 2. Soit $a \in]0, \pi[$. Étudier la convergence uniforme de (f_n) sur le segment $[a, \pi]$.

Exercices Supplémentaires

Exercice 7

Étudier la convergence simple et la convergence uniforme de la suite de fonctions (f_n) où pour tout $n: f_n: E \to \mathbb{R}$.

1.
$$f_n(x) = \begin{cases} \left(1 - \frac{x}{n}\right)^n & \text{si } x \in [0, n], \\ 0 & \text{si } x > n. \end{cases}, E = \mathbb{R}_+.$$

- 2. $f_n(x) = x^n \ln(x)$ prolongée avec $f_n(0) = 0$, E = [0, 1].
- 3. $f_n(x) = e^{-nx^2} \sin(nx^2)$, E = [0, 1] puis E = [a, 1] avec $a \in]0, 1[$.
- 4. $f_n(x) = n^{\alpha} x e^{-nx}, E = \mathbb{R}_+, \alpha \in \mathbb{R}$.

Exercice 8

Soit $a \in [0, 1[$. Considérons la suite des fonctions

$$f_n: \begin{cases} \mathbb{C} & \to \mathbb{C} \\ z \mapsto & 1+z+\cdots+z^n \end{cases}$$

2

- 1. Montrer que (f_n) converge uniformément vers $f: z \mapsto (1-z)^{-1}$ dans chaque disque $D_a = \{z \in \mathbb{C}, |z| \leq a\}$.
- 2. Montrer que (f_n) converge simplement, mais non uniformément, dans le disque unité ouvert $D = \{z \in \mathbb{C}, |z| < 1\}.$

Partie 2 - Théorèmes d'interversion

Exercice 9

On considère la suite (f_n) définie sur [0,1] par

$$f_n(x) = \begin{cases} n^2 x (1-x) & \text{si } x \in [0, \frac{1}{n}], \\ 0 \text{ sinon} \end{cases}$$

- 1. Montrer que la suite (f_n) converge simplement vers une fonction f que l'on déterminera.
- 2. Calculer

$$\int_0^1 f_n(x) \, \mathrm{d}x \quad \text{ et } \quad \int_0^1 f(x) \, \mathrm{d}x.$$

- 3. La suite (f_n) converge-t-elle uniformément vers f sur [0,1] ?
- 4. Soit $a \in]0,1[$. Étudier la convergence uniforme de (f_n) vers f sur [a,1].

Exercice 10

Calculer

1.
$$\lim_{n \to +\infty} \int_0^1 \frac{ne^x}{n+x} \, \mathrm{d}x$$

2.
$$\lim_{n \to +\infty} \int_0^1 \frac{x^5}{(1+x^2)^n} dx$$
.

Exercice 11

On considère la suite (f_n) définie sur [-1,1] par

$$f_n(x) = \frac{x}{1 + n^2 x^2}.$$

- 1. Montrer que la suite (f_n) converge uniformément sur [-1,1] vers la fonction nulle.
- 2. Étudier la convergence de la suite (f'_n) sur [-1,1].
- 3. Soit (g_n) la suite de fonctions définie sur [-1,1] par

$$g_n(x) = \frac{\ln(1 + n^2 x^2)}{2n^2}.$$

Montrer que la suite (g_n) converge uniformément vers la fonction nulle sur [-1,1].

Exercice 12

On considère la suite (f_n) définie sur [0,1] par

$$f_n(x) = \frac{ne^{-x} + x^2}{n+x}$$

- 1. Montrer que la suite (f_n) converge uniformément vers une limite f à déterminer.
- 2. En déduire la nature de la suite

$$u_n = \int_0^1 \frac{ne^{-x} + x^2}{n+x} \, \mathrm{d}x.$$

Exercices Supplémentaires

Exercice 13

On considère la suite (f_n) définie sur [0,1] par

$$f_n(x) = \frac{n(x^3 + x)e^{-x}}{nx + 1}$$

- 1. Montrer que la suite (f_n) converge simplement vers une limite f à déterminer.
- 2. Montrer que la suite (f_n) converge uniformément sur tout intervalle [a,1] avec $a \in]0,1[$. A-t-on convergence uniforme sur [0,1]?
- 3. Montrer que $|f_n(x) f(x)|$ est bornée sur [0,1].
- 4. Déduire des questions précédentes la nature de la suite

$$u_n = \int_0^1 \frac{n(x^3 + x)e^{-x}}{nx + 1} dx.$$

Exercice 14

On considère la suite (f_n) et la fonction ψ définie sur $\mathbb R$ par

$$f_n(x) = x + \frac{1}{n}, \quad \psi(x) = x^2.$$

Montrer que (f_n) converge uniformément sur \mathbb{R} vers une limite f, mais que $\psi \circ f_n$ ne converge pas uniformément sur \mathbb{R} vers $\psi \circ f$.

Généralisation:

Soit (f_n) une suite de fonction de \mathbb{R} dans \mathbb{R} qui converge uniformément sur \mathbb{R} vers une fonction f.

- 1. Soit $\phi : \mathbb{R} \to \mathbb{R}$ une fonction. Montrer que $(f_n \circ \phi)$ converge uniformément sur \mathbb{R} vers $f \circ \phi$.
- 2. Soit $\psi : \mathbb{R} \to \mathbb{R}$ une fonction uniformément continue sur \mathbb{R} . Montrer que $(\psi \circ f_n)$ converge uniformément sur \mathbb{R} vers $\psi \circ f$.
- 3. À l'aide de l'exemple ci-dessus, que pouvez-vous dire si ψ n'est pas uniformément continue?