


# Électromagnétisme

Chapitre 2 - Champ électrostatique







### Programme d'électrostatique

- Chapitre 1 Force entre deux charges
- Chapitre 2 Champ électrostatique
- Chapitre 3 Théorème de superposition et symétries
- Chapitre 4 Théorème de Gauss
- Chapitre 5 Potentiel électrostatique
- Chapitre 6 Conducteurs en équilibre électrostatique





#### 1.2.1 Unités rationalisées

#### <u>Loi de</u> Coulomb :

**Enoncé** : Soient la charge  $q_1$ , placée au point  $M_1$ , et la charge  $q_2$ , placée au point  $M_2$ .

La force  $\overrightarrow{F_{1/2}}$  exercée par la charge ponctuelle  $q_1$  sur la charge ponctuelle  $q_2$  a pour expression :

$$\overrightarrow{F_{1/2}} = k \frac{q_1 q_2}{r_{12}^2} \vec{u}_{1 \to 2}$$

 $\overrightarrow{F_{1/2}}$  force en Newton (N) de  $q_1$  sur  $q_2$ 

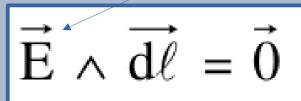
q<sub>1</sub>, q<sub>2</sub> charges ponctuelles en Coulomb (C)

 $r_{12}$  (=  $M_1M_2$ ) distance en Mètre (m) entre  $q_1$  et  $q_2$ 

 $\vec{u}_{1 \rightarrow 2}$  vecteur unitaire sans dimension dirigé de  $M_1$  vers  $M_2$ 

La constante k dépend du milieu. [SI] : [Kg.m<sup>3</sup>.s<sup>-4</sup>.A<sup>-2</sup>]

Dans le vide elle vaut :  $\frac{1}{4\pi\epsilon_0}$  = 9.10<sup>9</sup> [SI] avec  $\epsilon_0$ , permittivité absolue du vide.






### 1.2.2 Lignes de champ

#### Lignes de

<u>Change</u>ne de champ d'un champ de vecteur quelconque est une courbe C définie dans l'espace telle qu'en chacun de ses points, le vecteur y soit tangent.



Dans le repère cartésien,  $\overrightarrow{d\ell}$  s'écrit :

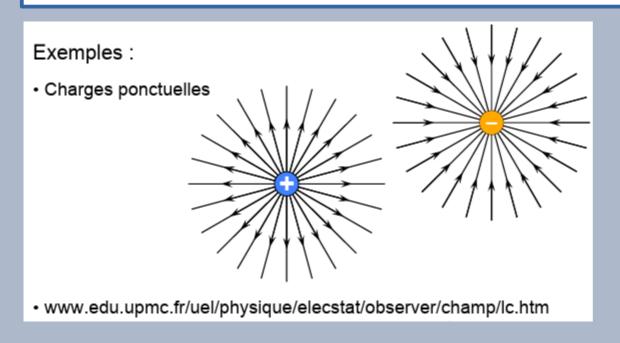
$$\overrightarrow{d\ell} = \begin{vmatrix} dx \\ dy \\ dz \end{vmatrix} \Rightarrow \frac{dx}{E_x} = \frac{dy}{E_y} = \frac{dz}{E_z} *$$

Dans le repère de coordonnées cylindriques,  $\overrightarrow{d\ell}$  s'écrit :

$$\overrightarrow{d\ell} = \begin{vmatrix} d\rho \\ \rho d\theta \\ dz \end{vmatrix} \Rightarrow \frac{d\rho}{E_{\rho}} = \frac{\rho d\theta}{E_{\theta}} = \frac{dz}{E_{z}}$$

Dans le repère de coordonnées sphériques,  $\overrightarrow{d\ell}$  s'écrit :

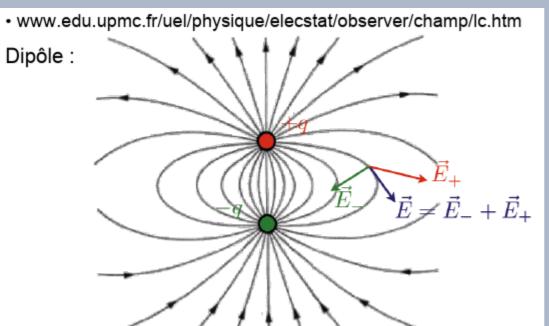
$$\overrightarrow{d\ell} = \begin{vmatrix} dr \\ rd\theta \\ rsin\theta d\varphi \end{vmatrix} \Rightarrow \frac{dr}{E_r} = \frac{rd\theta}{E_{\theta}} = \frac{rsin\theta d\varphi}{E_{\phi}}$$

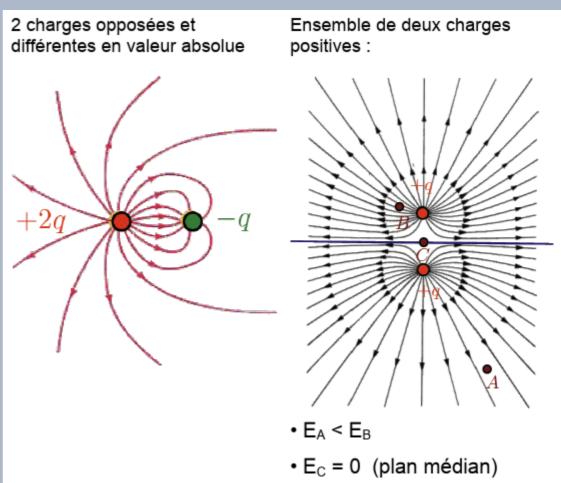





#### 1.2.2 Lignes de champ

Les lignes de champ permettent de visualiser l'allure du champ électrique. Par construction :

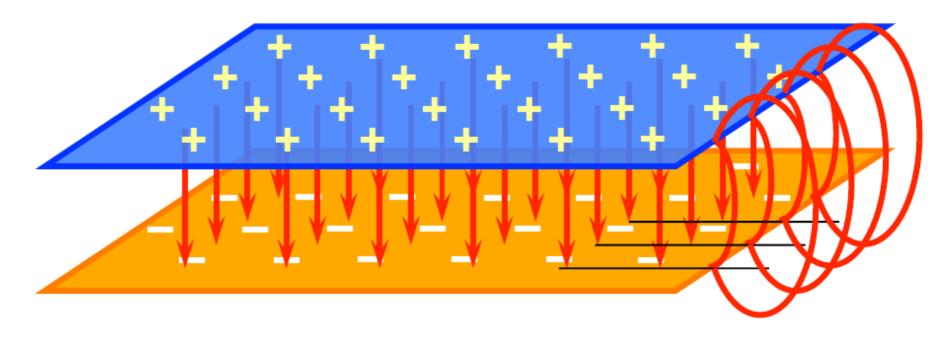

- elles sont tangentes au vecteur  $\vec{E}(\vec{r})$
- elles sont orientées dans le sens de É(r)
- elles ne se croisent jamais.








### 1.2.2 Lignes de champ








1.2.2 Lignes de champ

### Deux plans chargés :



Le champ est uniforme entre les deux plaques.





### 1.2.3 Champ électrostatique d'une distribution continue de charges

# 1. Définition du champ électrostatique

**Définition :** Si une particule ponctuelle de charge q, immobile en un point M de l'espace, est soumise

à une force  $\vec{F}$  autre que son poids et nulle si q est nulle, alors, il existe un champ électrostatique  $\vec{E}$  au

point M tel que:

$$\vec{F} = q. \vec{E}$$

F : force en Newton (N)

q : charge ponctuelle en Coulomb (C)

È : champ électrostatique en N.C<sup>-1</sup> ou V.m<sup>-1</sup>

### 2. Champ électrostatique créé par une charge

ponctualla

Soit une charge q' placée en M et subissant de la part d'une charge ponctuelle q placée en P la force de Coulomb

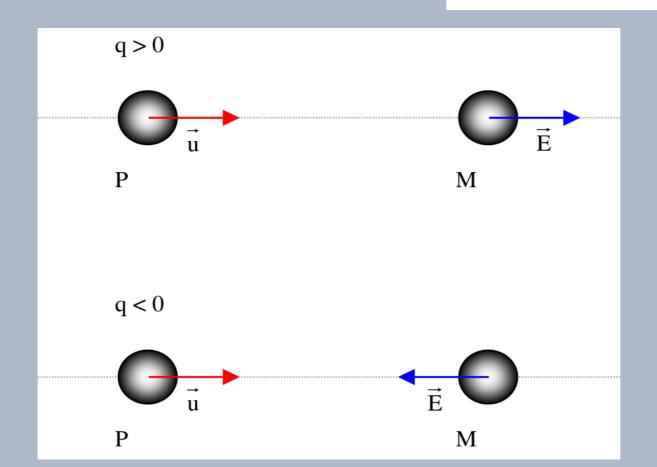
$$\vec{F} = \frac{1}{4\pi\epsilon_0} \frac{q \cdot q'}{r^2} \vec{e}_{PM} = \frac{1}{4\pi\epsilon_0} \frac{q \cdot q'}{PM^3} \overrightarrow{PM} = q'. \vec{E}$$

la charge q est en interaction coulombienne avec la charge q'.





#### 1.2.3 Champ électrostatique d'une distribution continue de charges


$$\vec{E} = \frac{1}{4\pi\epsilon_0} \frac{q}{r^2} \vec{u} = \frac{1}{4\pi\epsilon_0} \frac{q}{PM^3} \overrightarrow{PM}$$

E : champ électrostatique en M

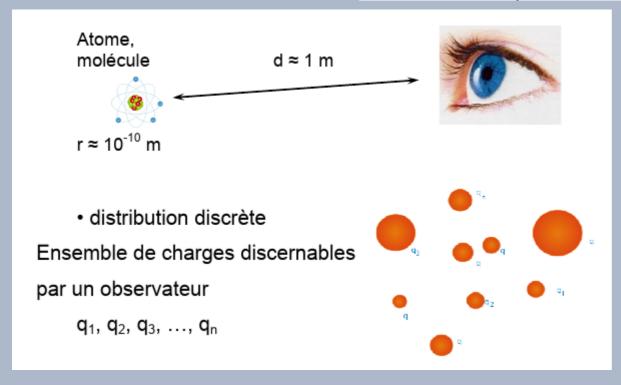
q : la charge en P

r : distance PM

 $\varepsilon_0$  : permittivité du vide








### 1.2.3 Champ électrostatique d'une distribution continue de charges

3. Champ électrostatique créé par un ensemble de charges ponctuelles (distribution discrète)

$$\vec{E}(M) \, = \, \sum_{i=1}^{N} \frac{q_{i}}{4\pi\epsilon_{0}} \cdot \frac{\overrightarrow{u_{i}}}{r_{i}^{2}}$$

$$\vec{u}_i = \frac{\vec{P}_i \vec{M}}{\vec{P}_i M} = \frac{\vec{r}_i}{\vec{r}_i}$$
: vecteur unitaire de la droite (P<sub>i</sub>M) dirigé de P vers M

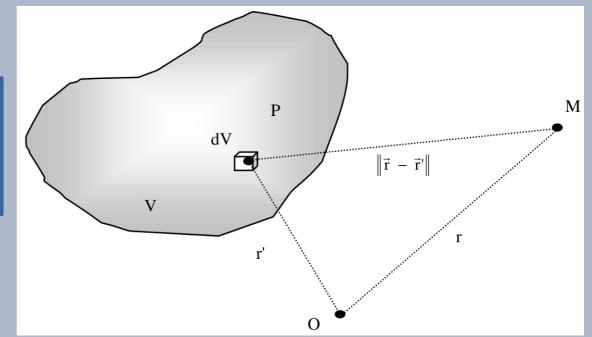






#### 1.2.3 Champ électrostatique d'une distribution continue de charges

Jusqu'à présent, nous avons étudié la force et le champ électrostatiques dans le cas des distributions de charges discrètes.


Grâce au <u>principe de superposition</u> qui traduit la linéarité et l'additivité des interactions électrostatiques, il est possible de généraliser les différents résultats précédemment obtenus aux cas de distributions de charges quelconques



### 1.2.3 Champ électrostatique d'une distribution continue de charges

$$\vec{E}(M) = \frac{1}{4\pi\epsilon_0} \iiint_{P \in V} \frac{\overrightarrow{PM}}{PM^3} \ \rho(P)dV$$
nouveauté

$$\vec{E}(r) = \frac{1}{4\pi\epsilon_0} \iiint_{P \in V} \frac{\vec{r} - \vec{r}'}{\|\vec{r} - \vec{r}'\|^3} \rho(r') dV$$





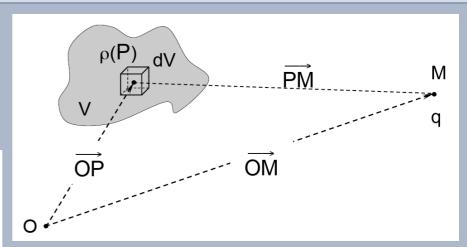


### 1.2.3 Champ électrostatique d'une distribution continue de charges

**U**i

$$\vec{dE} = \frac{dq}{4\pi\epsilon_0} \frac{\overrightarrow{PM}}{PM^3} = \frac{\rho(P) \ dV}{4\pi\epsilon_0} \frac{\overrightarrow{PM}}{PM^3}$$

la distribution de charge volumique :

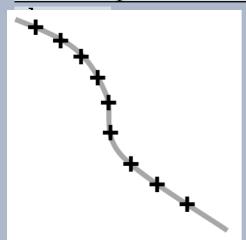

$$\vec{E}(M) = \frac{1}{4\pi\epsilon_0} \iiint_V \rho(P) \frac{PM}{PM} d\tau$$

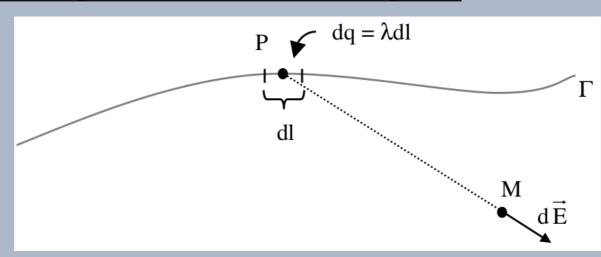
Pour une distribution surfacique :

$$\vec{E}(M) = \frac{1}{4\pi\epsilon_0} \iint_{S} \vec{O(P)} \vec{PM} dS$$

Pour une distribution linéique:

$$\vec{E}(M) = \frac{1}{4\pi\epsilon_0} \int \frac{\lambda(P)}{PM^2} \frac{\vec{PM}}{PM} d\ell$$






### 1.2.3 Champ électrostatique d'une distribution continue de charges

#### 4. Champ électrostatique créé par une distribution linéique de

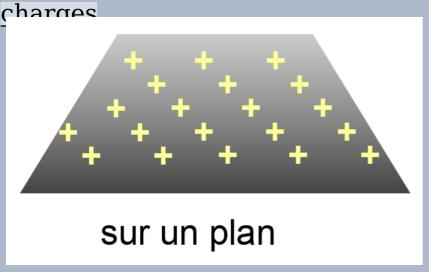


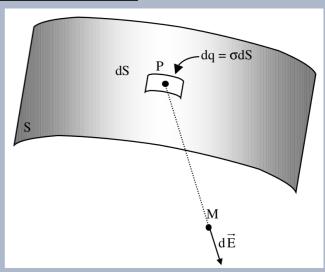


$$\vec{E}(M) = \int\limits_{\Gamma} d\vec{E} = \int\limits_{P \in \Gamma} \frac{dq}{4\pi\epsilon_0 r^2} \vec{u} = \int\limits_{P \in \Gamma} \frac{\lambda dl}{4\pi\epsilon_0 r^2} \vec{u} \qquad \text{avec} \qquad \vec{u} = \frac{\vec{r}}{r} = \frac{\overrightarrow{PM}}{PM}$$

On définit la **densité linéique** de charges  $\lambda$  par :

$$\lambda = \lim_{\Delta I \to 0} \frac{\Delta Q}{\Delta I} = \frac{dQ}{dI}$$


en C·m<sup>-1</sup>






#### 1.2.3 Champ électrostatique d'une distribution continue de charges

5. Champ électrostatique créé par une distribution surfacique de





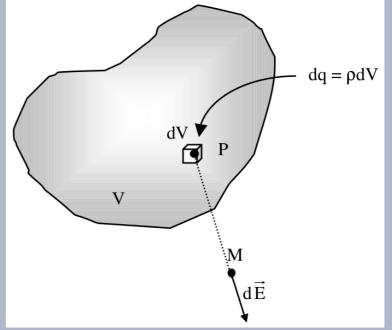
$$\vec{E}(M) = \iint_{S} d\vec{E} = \iint_{P \in S} \frac{dq}{4\pi\epsilon_{0}r^{2}} \vec{u} = \iint_{P \in S} \frac{\sigma dS}{4\pi\epsilon_{0}r^{2}} \vec{u} \text{ avec} \qquad \vec{u} = \frac{\vec{r}}{r} = \frac{\overrightarrow{PM}}{PM}$$

On définit la **densité surfacique** de charges  $\sigma$  par :

$$\sigma = \lim_{\Delta S \to 0} \frac{\Delta Q}{\Delta S} = \frac{dQ}{dS}$$

en C·m<sup>-2</sup>






### 1.2.3 Champ électrostatique d'une distribution continue de charges

6. Champ électrostatique créé par une distribution volumique de charges

$$\rho = \lim_{\Delta v \to 0} \frac{\Delta Q}{\Delta v} = \frac{dQ}{dv}$$

en C·m<sup>-3</sup>



$$\vec{E}(M) = \iiint_V d\vec{E} = \iiint_{P \in V} \frac{dq}{4\pi\epsilon_0 r^2} \vec{u} = \iiint_{P \in V} \frac{\rho dV}{4\pi\epsilon_0 r^2} \vec{u} \quad \text{ avec } \quad \vec{u} = \frac{\vec{r}}{r} = \frac{\overrightarrow{PM}}{PM}$$





### 1.2.3 Champ électrostatique d'une distribution continue de charges

#### Définition et continuité du champ

/1 - - L - - - L - L - - - -

Soit une collection de charges ponctuelles. Le champ électrostatique  $\vec{E}$  créé par cette collection est défini et continu en tout point de l'espace, sauf sur les charges.

Soit une distribution linéique de charges. Le champ électrostatique  $\stackrel{\frown}{E}$  créé par cette distribution est défini et continu en tout point de l'espace, sauf sur les points de la distribution.

Soit une distribution surfacique de charges. Le champ électrostatique  $\vec{E}$  créé par cette distribution est défini et continu en tout point de l'espace, sauf sur les points de la distribution ; il est donc discontinu à la traversée de la surface.

Soit une distribution volumique de charges. Le champ électrostatique  $\vec{E}$  créé par cette distribution est défini et continu en tout point de l'espace.





### **Bibliographie**

- [1]Polycopié de cours
- [2] <u>CUPGE CY : Introduction à l'électromagnétisme</u>
- [3] Wikipédia
- [4] Encyclopédie Universalis
- [5] David Sénéchal <u>« Histoire des sciences » PHQ399</u> Université de Sherbrooke, QC
- [6] pour la suite: Khan Academy, Unisciel etc.
- [7] Cours LP 203 Champs électrique et magnétique de Nicolas MENGUY

