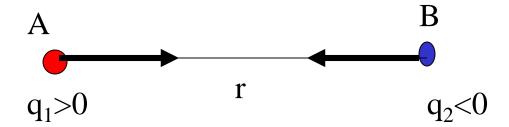


Chapitre 1 Le champ d électrostatique

I. Force électrostatique

1. Loi de Coulomb

•



La Force d'interaction électrostatique entre deux charges ponctuelles q_1 et q_2 est définie par la relation:

$$\vec{F}_{1/2} = K \frac{q_1 q_2}{r^2} \vec{u}$$

u est le vecteur unitaire de la droite (AB)

avec $K = 9.10^9$ S.I (dans l'air ou le vide)

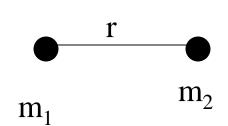
$$\vec{F}_{1/2} = K \frac{q_1 q_2}{r} \vec{u}$$

$$|\vec{F}_{1/2}| = |\vec{F}_{2/1}| = F = K \frac{|q_1 q_2|}{r}$$

On pose
$$K = \frac{1}{4\pi \mathcal{E}_0}$$

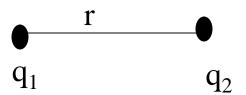
ε₀ s'appelle la permittivité de l'air ou du vide

2. Analogie avec l'interaction gravitationnelle



$$F_{gravi}$$
= $G\frac{m_1m_2}{r}$

G est la constante gravitationnelle



$$F_{Coulomb} = K \frac{|q_1 q_2|}{r}$$

3. Exemples.

Exemple1.

Calculer La force de répulsion électrique qui existe entre deux particules α (noyau d'atome d'hélium contenant deux protons et deux neutrons) distantes de 10^{-11} cm.

Charge de l'électron $e^- = 1,6.10^{-19}$ C

$$H_e^{2+}$$
 H_e^{2+} H_e^{2+} H_e^{2+} $q_2=2e^-$

Loi de Coulomb: 2 particules de mêmes signes se repoussent

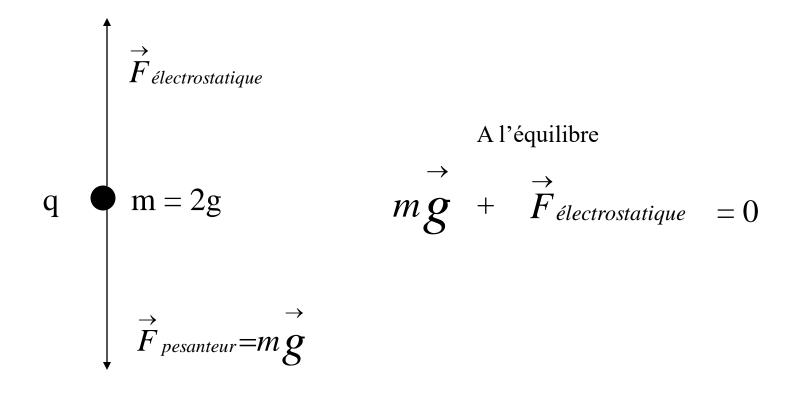
$$F_{Coulomb} = K \frac{|q_1 q_2|}{r}$$

AN:
$$F = 92 \cdot 10^{-3} \text{ N}$$

Exemple 2.

Quelle charge doit porter une particule de masse 2g, pour demeurer à l'équilibre dans le laboratoire s'il existe un champ électrostatique dirigé vers le bas de 500 v/m?

$$g = 9.8 \text{ ms}^{-2}$$
.



II Le champ électrostatique

1. champ électrostatique créé par une charge ponctuelle

$$\vec{E} = \frac{1}{4\pi\varepsilon_0} \frac{q}{r^2} \vec{u}$$

$$\vec{u}$$

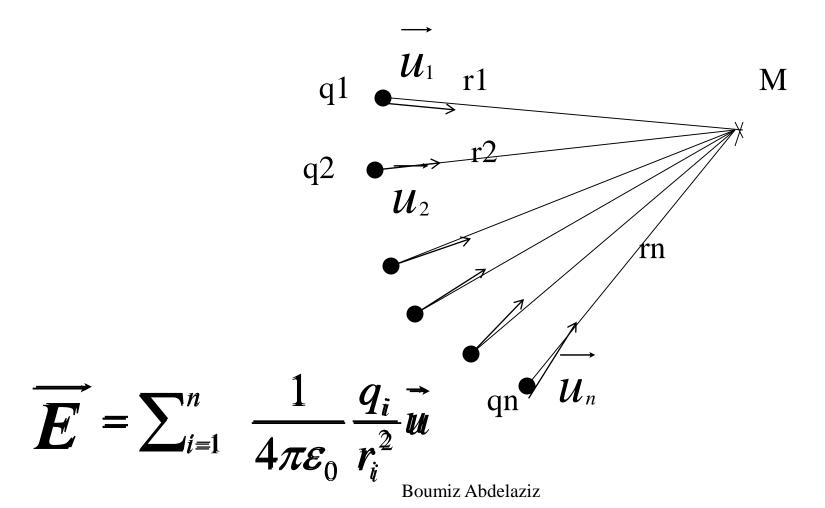
$$q>0$$

$$\vec{E} = \frac{1}{4\pi\varepsilon_0} \frac{q}{r^2} \vec{u}$$

$$\vec{E}$$

$$q<0$$

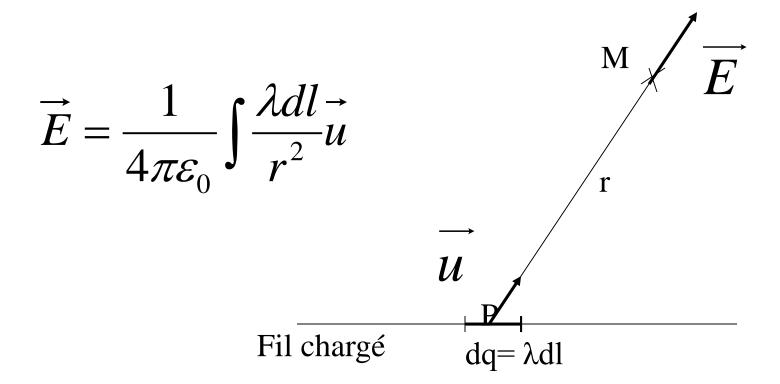
2. champ électrostatique créé par une distribution de charge ponctuelles



12

5. champ électrostatique créé par une distribution de charge continue

3.1. Distributions linéaire



- -dl est en élément de longueur
- -dl porte la charge élémentaire dq
- -Par définition dq= λdl

 Où λ est la densité linéique de charge dq créé en M le champ élémentaire dE

3.2 . Distributions surfaciques

3.3. Distributions volumiques

III Symétries de distributions de charges

1. Distribution de symétrie cylindrique

$$\rho(r,\theta,z) = \rho(r)$$

Invariance de la distribution de charges par rotation d'angle θ et par translation le long de (oz)

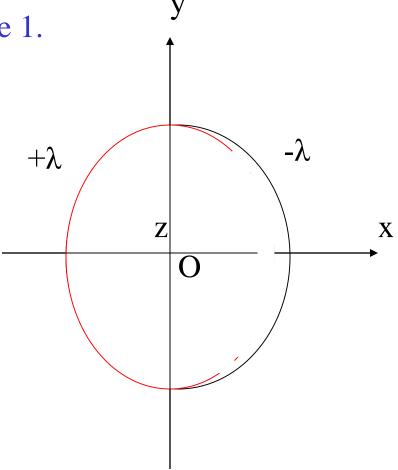
2. Distribution de symétrie sphérique

$$\rho(r,\theta,\phi) = \rho(r)$$

Invariance de la distribution de charges par rotation d'angle θ et ϕ

3. Exemples

Exemple 1.



IV Propriétés de symétrie du champ électrostatique

1. Symétrie plane

Voir Figure

Propriété 1

Le champ électrostatique appartient au plan de symétrie de charge en chacun de ses points

2 Antisymétrie plane

Voir Figure

Propriété 2

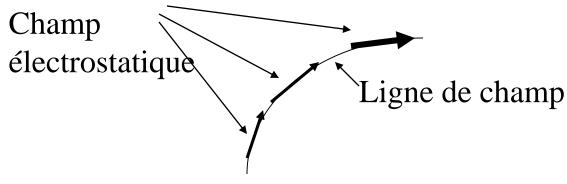
Le champ électrostatique est perpendiculaire au plan d'antisymétrie de charge en chacun de ses points.

V Lignes de champ-Tubes de champ

1. Lignes de champ

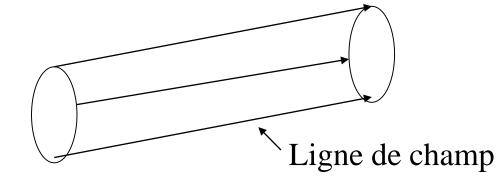
Le vecteur champ électrostatique est en tout point tangent à une courbe appelée ligne de champ.

Ces lignes sont orientées par le sens du champ.



... Tube de champ

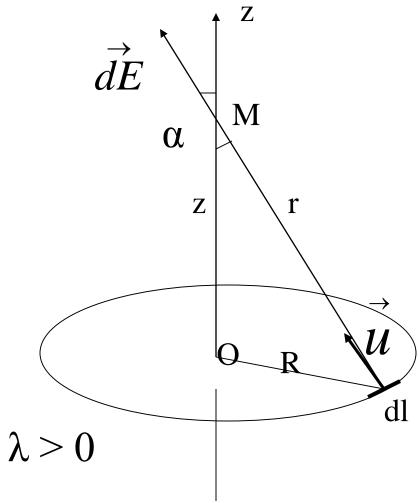
Figure



L'ensemble des lignes de champ engendre une surface, appelée tube de champ.

VI. Exemples de calcul du champ électrostatique

- 1. Champ créé par une spire circulaire en tout point de son axe.
- Soit une spire circulaire de rayon R, de charge linéique $\lambda > 0$.
- Calculer le champ électrostatique en tout point de son axe



VII Circulation de É et potentiel électrostatique

Soit qune charge placée en un point O.

Soit E le champ électrostatique créé par q en tout point M de l'espace .

Par définition la circulation élémentaire dC le long de

 $\overrightarrow{MM'}$ est donnée par la relation:

$$dC = \overrightarrow{E}.\overrightarrow{MM}$$

M' est un point voisin de M

$$dC = K \frac{q}{r^2} dr$$

$$dC = d(-Kq\frac{1}{r})$$

$$C = \int_{r_1}^{r_2} \frac{-q}{4\pi\varepsilon_0} d(\frac{1}{r})$$

$$C = \frac{-q}{4\pi\varepsilon_0} \int_{r_1}^{r_2} d(\frac{1}{r})$$

$$C = \frac{-q}{4\pi\varepsilon_0} \left(\frac{1}{r_2} - \frac{1}{r_1}\right)$$

On constate que la circulation est indépendante du chemin suivi, qu'elle ne dépend que des points de départ et d'arrivée $(r_1 \text{ et } r_2)$

On pose
$$V(M) = \frac{q}{4\pi \mathcal{E}_0 r}$$

$$dC = -dV_{Boumiz Abdelaziz}$$

VIII Le théorème de Gauss

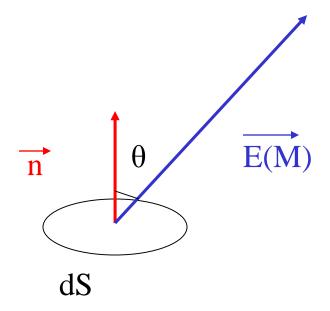
1 – Flux du champ électrostatique

Définition:

Soit $\overrightarrow{E}(M)$ un champ électrostatique défini dans un domaine de l'espace.

On appelle flux élémentaire d Φ du champ $\overrightarrow{E}(M)$ à travers la surface dS la quantité :

$$d\phi = \stackrel{\rightarrow}{E}(M) \stackrel{\rightarrow}{dS}$$
 avec $\stackrel{\rightarrow}{dS} = \stackrel{\rightarrow}{ndS}$



Le vecteur normal n est choisi, parconvention, dirigé vers l'extérieur de la surface fermée.

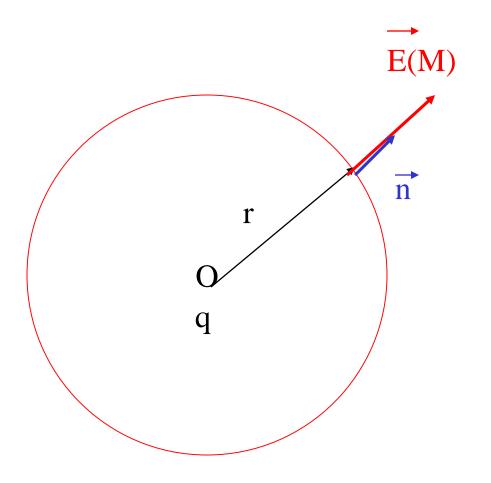
On définit alors le flux sortant à travers la surface fermée, que l'on note :

$$\phi = \oiint \stackrel{\rightarrow}{E}(M) \overrightarrow{dS}$$

2. Théorème de Gauss

Le théorème de Gauss permet d'exprimer le flux du champ électrostatique sortant d'une surface fermée, en fonction des charges contenues à l'intérieur de cette surface.

Soit une charge ponctuelle q placée en O et on choisit comme surface de Gauss la sphère C(O,r).



Enoncée du théorème

Le flux du champ électrostatique à travers une surface fermée, est égal à la charge interne divisée par ε_0

$$\phi = \oiint \stackrel{\rightarrow}{E}(M) \overrightarrow{dS} = \frac{Q_{\text{int}}}{\mathcal{E}_0}$$

$$\phi = E(r) \iint dS$$

$$\phi = E4\pi r^2$$

or
$$E = \frac{1}{4\pi\varepsilon_0} \frac{q}{r^2}$$

$$\Phi = \frac{1}{4\pi\varepsilon_0} \frac{q}{r^2} 4\pi r^2$$

soit

$$\Phi = \frac{q}{\mathcal{E}_0}$$

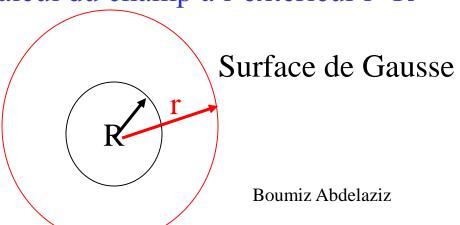
3. Exemples

Exemple 1: Champ créé par une sphère pleine

Soit une sphère (O,R) uniformément chargée en volume.

Elle porte une charge de densité volumique ρ constante>0

1er cas calcul du champ à l'extérieur r>R



$$\phi = \iint \vec{E}(M) \vec{dS} = \iint E(M) dS$$

$$\phi = E(r) \iint dS$$

$$\phi = E.4\pi . r^2$$

Or
$$Q_i = \rho \frac{4\pi . R^3}{3}$$

Th de Gauss:
$$\Phi = \frac{Q_i}{\mathcal{E}_0}$$