CC3

Électromagnétisme 16 Janvier 2025 — PréIng2

Durée: 1h30 minutes (2h en cas de tiers temps)

Sont interdits:

- les documents ;
- tous les objets électroniques (calculatrice, téléphone, tablette, ordinateur...)
 de même que les montres connectées;
- les déplacements et les échanges.

Consignes générales

Seules les dernières feuilles doivent être rendues :

- 1. la feuille-réponse du QCM:
 - (a) y indiquer vos nom et prénom dès le début officiel de l'épreuve;
 - (b) *complètement noircir* la case correspondant à une bonne réponse (une simple croix ne sera pas comptabilisée) ;
 - (c) il n'y a pas de point négatif pour une réponse incorrecte *sauf* pour les questions de cours (la moitié des points);
 - (d) chaque question ne comporte qu'une seule réponse;
- 2. les feuilles de réponses aux questions ouvertes.

Vérifier que ce document comporte 16 pages et 19 questions.

Les réponses aux questions ouvertes doivent être justifiées. Une attention particulière sera portée à la rigueur, à la qualité et au soin de la rédaction.

Le barème est donné à titre indicatif.

Questions de cours (4 points)

Question 1 (0.5 point)

Le **théorème d'Ampère** relie le *champ magnétique* \overrightarrow{B} et l'intensité des courants I_i (comptés algébriquement) qui traversent toute surface ouverte S, s'appuyant sur un contour Γ . Il s'énonce :

$$\boxed{\mathbf{A}} \oint_{\mathbf{D}} \overrightarrow{B} \wedge \overrightarrow{dl} = \mu_0 \sum_{i} I_i$$

$$\oint_{\Gamma} \vec{B} \cdot \vec{dl} = \mu_0 \sum_{i} I_i$$

$$\boxed{\mathbf{D}} \iint_{\Gamma} \vec{B} \cdot \vec{dl} = \mu_0 \sum_{i} I_i$$

E Aucune des réponses précédentes n'est correcte.

Question 2 (0.5 point)

En étudiant les plans d'anti-symétrie pour la distribution de courant, on trouve que le vecteur champ magnétique \vec{B} en M

- $oxed{A}$ a pour direction celle de la droite intersection d'un plan de symétrie et d'un plan d'anti-symétrie, passant par M.
- est inclus dans tout plan Π' d'anti-symétrie, passant par M.
- \square a pour direction celle de la droite orthogonale à un plan Π' d'anti-symétrie, passant par M.
- D Aucune des réponses précédentes n'est correcte.

Question 3 (1 point)

Les quatre équations de Maxwell pour le champ éléctromagnétique sont :

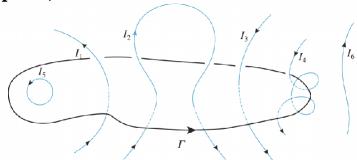
$$\boxed{\mathbf{A}} \ \mathbf{div} \, \overrightarrow{E} = \rho \; ; \; \mathbf{div} \, \overrightarrow{B} = 0 \; ; \; \overrightarrow{\mathbf{rot}} \overrightarrow{E} = \frac{\partial \overrightarrow{B}}{\partial t} \; ; \; \overrightarrow{\mathbf{rot}} \overrightarrow{B} = \mu_0 \, \overrightarrow{j} + \mu_0 \varepsilon_0 \frac{\partial \overrightarrow{E}}{\partial t}$$

$$\boxed{ \textbf{B} \ \ \text{div} \, \overrightarrow{E} = \frac{\rho}{\varepsilon_0} \; ; \; \text{div} \, \overrightarrow{B} = 0 \; ; \; \overrightarrow{\text{rot}} \overrightarrow{E} = \frac{\partial \overrightarrow{B}}{\partial t} \; ; \; \overrightarrow{\text{rot}} \overrightarrow{B} = \mu_0 \overrightarrow{j} + \mu_0 \varepsilon_0 \frac{\partial \overrightarrow{E}}{\partial t} }$$

$$\boxed{\mathbf{K}} \ \operatorname{div} \vec{E} = \frac{\rho}{\varepsilon_0} \ ; \ \operatorname{div} \vec{B} = 0 \ ; \ \overrightarrow{\operatorname{rot}} \vec{E} = -\frac{\partial \vec{B}}{\partial t} \ ; \ \overrightarrow{\operatorname{rot}} \vec{B} = \mu_0 \vec{j} + \mu_0 \varepsilon_0 \frac{\partial \vec{E}}{\partial t}$$

D Aucune des réponses précédentes n'est correcte.

Question 4 (1 point)


Soient la densité de courant \vec{j} et la densité volumique de charges ρ , l'équation locale de conservation de la charge électrique s'écrit alors :

$$\boxed{\mathsf{B}} \ \mathsf{div} \ \overrightarrow{j} + \varepsilon_0 \frac{\partial \rho}{\partial t} = 0$$

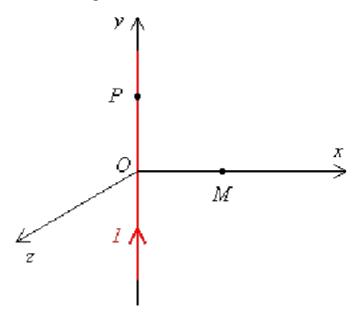
$$|\mathbf{X}| \operatorname{div} \overrightarrow{j} + \frac{\partial \rho}{\partial t} = 0$$

$$\boxed{\mathsf{D}} \operatorname{div} \overrightarrow{j} - \frac{\partial \rho}{\partial t} = 0$$

Question 5 (1 point)

La circulation C du champ magnétique B sur le contour orienté Γ vaut :

$$C = I_1 - I_3 - 3I_4$$


$$\boxed{\mathsf{E}} \ C = I_1 + 2I_2 - I_3 - I_4$$

$$\boxed{\mathsf{F}} \ \ C = -I_1 + I_3 + 3I_4 - I_5 + I_6$$

G Aucune des réponses précédentes n'est correcte

Fil rectiligne de longueur infinie (5 points)

Un fil rectiligne de longueur infinie est parcouru par un courant *I* uniforme et constant, schématisé sur la figure ci-dessous.

On se place dans la base cartésienne $\mathcal{B}=(\vec{e_x},\vec{e_y},\vec{e_z})$.

Soient le point M de coordonnées (x,0,0) et le point P de coordonnées (0,y,0) associé à l'élément de courant $I\vec{dl}$.

Question 6 (1 point)

La **loi de Biot et Savart** permet de calculer le champ magnétique \vec{B} en M, pour un fil parcouru par un courant I. Elle s'énonce :

$$\boxed{\mathbf{A}} \ \overrightarrow{B}(M) = \oint\limits_{P \in \ \mathrm{fil}} \frac{\mu_0 I}{4\pi} \frac{\overrightarrow{dl} \wedge \overrightarrow{MP}}{MP^2}$$

$$\boxed{\mathbf{B}} \ \overrightarrow{B}(M) = \oint\limits_{P \in \ \mathrm{fil}} \frac{\mu_0 I}{4\pi} \frac{\overrightarrow{dl} \wedge \overrightarrow{PM}}{PM^2}$$

$$\overrightarrow{B}(M) = \oint\limits_{P \in \text{ fil}} \frac{\mu_0 I}{4\pi} \frac{\overrightarrow{dl} \wedge \overrightarrow{PM}}{PM^3}$$

D Aucune des réponses précédentes n'est correcte

Question 7 (1 point)

En appliquant la **loi de Biot et Savart**, on trouve que le champ magnétostatique élémentaire $\overrightarrow{dB}(M)$ s'écrit :

$$\boxed{\mathbf{A}} \ \vec{dB}(M) = \frac{\mu_0 I}{4\pi} \frac{x}{(x^2 + y^2)^{3/2}} dy \vec{e_z}$$

$$\vec{B} \ \vec{dB}(M) = -\frac{\mu_0 I}{4\pi} \frac{x}{(x^2 + y^2)^{3/2}} dy \vec{e_x}$$

$$\vec{\mathbf{X}} \ \vec{dB}(M) = -\frac{\mu_0 I}{4\pi} \frac{x}{(x^2 + y^2)^{3/2}} dy \vec{e_z}$$

$$\boxed{\mathbf{D}} \ \vec{dB}(M) = \frac{\mu_0 I}{4\pi} \frac{x}{(x^2 + y^2)^{3/2}} dy \vec{e_x}$$

E Aucune des réponses précédentes n'est correcte

Question 8 (2 points)

Démontrer l'expression du champ magnétostatique élémentaire $\overrightarrow{dB}(M)$. **Répondez sur la feuille correspondante, à la fin du sujet.**

Question 9 (1 point)

Sachant que $\int_{-\infty}^{+\infty} \frac{x}{(x^2+y^2)^{3/2}} dy = \frac{2}{x}$, le champ magnétostatique total \vec{B} vaut :

$$\boxed{\mathbf{A}} \vec{B} = \frac{\mu_0 I}{2\pi x} \vec{e_x}$$

$$\boxed{\mathbf{B}} \ \vec{B} = \frac{\mu_0 I}{2\pi x} \vec{e_z}$$

$$\boxed{\mathbf{C}} \ \vec{B} = -\frac{\mu_0 I}{2\pi u} \vec{e_z}$$

$$\boxed{\mathbf{D}} \ \vec{B} = \frac{\mu_0 I}{2\pi y} \vec{e_z}$$

$$\boxed{\mathsf{E}} \ \vec{B} = -\frac{\mu_0 I}{2\pi y} \vec{e_x}$$

$$\vec{B} = -rac{\mu_0 I}{2\pi x} \vec{e_z}$$

$$\boxed{\mathbf{G}} \ \vec{B} = \frac{\mu_0 I}{2\pi y} \vec{e_x}$$

$$\boxed{\mathbf{H}} \vec{B} = -\frac{\mu_0 I}{2\pi x} \vec{e_x}$$

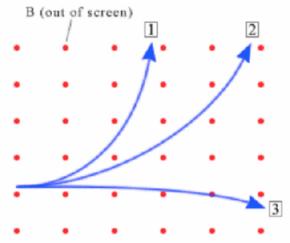
Aucune des réponses précédentes n'est correcte

Force de Lorentz (3 points)

Question 10 (0.5 point)

En présence d'un champ magnétique \overrightarrow{B} et sans champ électrique \overrightarrow{E} , une charge q à la vitesse \overrightarrow{v} est soumise à une force de Lorentz $\overrightarrow{f_L}$ avec :

$$\overrightarrow{f_L} = q\overrightarrow{v} \wedge \overrightarrow{B}$$


$$oxed{\mathsf{B}} \overrightarrow{f_L} = q \overrightarrow{v} \cdot \overrightarrow{B}$$

$$\boxed{\mathbf{C}} \overrightarrow{f_L} = qB\overrightarrow{v}$$

$$\boxed{\mathbf{D}} \ \overrightarrow{f_L} = qv\overrightarrow{B}$$

E Aucune des réponses précédentes n'est correcte

Question 11 (0.5 point)

Trois particules de même masse arrivent avec la même vitesse dans une région où règne un champ magnétique \vec{B} , uniforme et constant, sortant (points rouges). Alors, la particule qui a une charge positive est la :

A 2

X 3

C 1

D Aucune des réponses précédentes n'est correcte

Des particules de charge q>0 pénètrent à la vitesse \vec{v} dans un champ magnétique \vec{B} constant et uniforme.

 \vec{v} est porté par l'axe des y et dirigé vers les y>0 : $\vec{v}=v_y\vec{e}_y.$

Et \vec{B} est porté par l'axe des z et dirigé vers les z>0 : $\vec{B}=B_z\vec{e}_z$

L'espace est rapporté à un repère orthonormé direct (O; x, y, z).

Question 12 (1 point)

La force de Lorentz \overrightarrow{F}_L à laquelle sont soumises les particules vaut alors :

$$\boxed{\mathbf{A}} \overrightarrow{F}_L = -qv_y B_z \vec{e_x}$$

$$\overrightarrow{F}_L = qv_y B_z \vec{e_x}$$

$$\boxed{\mathbf{D}} \ \overrightarrow{F}_L = -qv_y B_z \vec{e_y}$$

$$\overrightarrow{F}_L = qv_y B_z \vec{e_y}$$

Question 13 (1 point)

Détailler les calculs pour obtenir cette force de Lorentz \overrightarrow{F}_L .

Répondez sur la feuille correspondante, à la fin du sujet.

Relation de dispersion (4 points)

 $\underline{\text{Donn\'ees}}$: Rotationnel d'un champ vectoriel \vec{U} , dans la base de coordonnées cartésiennes $(\vec{u}_x,\vec{u}_y,\vec{u}_z)$:

$$\overrightarrow{\operatorname{rot}}\overrightarrow{U} = \left(\frac{\partial U_z}{\partial y} - \frac{\partial U_y}{\partial z}\right)\overrightarrow{u_x} + \left(\frac{\partial U_x}{\partial z} - \frac{\partial U_z}{\partial x}\right)\overrightarrow{u_y} + \left(\frac{\partial U_y}{\partial x} - \frac{\partial U_x}{\partial y}\right)\overrightarrow{u_z}$$

On considère le champ électrique $\vec{E} = \vec{E}_0 e^{\alpha t - \beta x} \vec{e_z}$ dans le *vide* (α et $\beta \in \mathbb{C}$)

Question 14 (1 point)

Le rotationnel du champ électrique \overrightarrow{E} vaut :

$$\overrightarrow{\mathsf{N}} \ \overrightarrow{\mathsf{rot}} \ \overrightarrow{E} = \beta E_{u} \overrightarrow{e_{z}}$$

$$\overrightarrow{\operatorname{rot}} \overrightarrow{E} = \beta E_{y} \vec{e_{y}}$$

$$\overrightarrow{\mathrm{rot}}\overrightarrow{E}=eta E_z \overrightarrow{e_y}$$

E Aucune des réponses précédentes n'est correcte

Question 15 (1 point)

En utilisant une des quatre équations de Maxwell, on trouve que le champ magnétique \overrightarrow{B} vaut :

$$\overrightarrow{B} = -\frac{\alpha}{\beta} E_y \vec{e_z}$$

$$\boxed{\mathbf{B}} \ \overrightarrow{B} = -\frac{\alpha}{\beta} E_z \vec{e_y}$$

$$\boxed{\mathbf{D}} \ \overrightarrow{B} = \frac{\alpha}{\beta} E_z \vec{e_y}$$

$$\boxed{\mathbf{E}} \ \overrightarrow{B} = \frac{\alpha}{\beta} E_y \vec{e_z}$$

$$\overrightarrow{B} = \frac{\beta}{\alpha} E_y \vec{e_z}$$

$$\overrightarrow{B} = -\frac{\beta}{\alpha} E_y \vec{e_z}$$

$$\overrightarrow{B} = -rac{eta}{lpha}E_z \vec{e_y}$$

Aucune des réponses précédentes n'est correcte

Question 16 (1 point)

Le rotationnel du champ magnétique \overrightarrow{B} vaut donc :

$$\overrightarrow{\text{D}} \overrightarrow{\text{rot}} \overrightarrow{B} = -\frac{\beta^2}{\alpha} \overrightarrow{E}$$

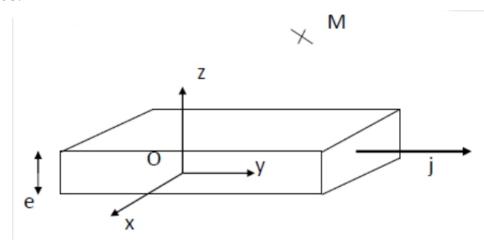
$$\overrightarrow{\mathbf{X}} \overrightarrow{\operatorname{rot}} \overrightarrow{B} = \frac{\beta^2}{\alpha} \overrightarrow{E}$$

$$\boxed{\mathbf{F}} \ \overrightarrow{\mathrm{rot}} \overrightarrow{B} = -\frac{\alpha}{\beta} \overrightarrow{E}$$

G Aucune des réponses précédentes n'est correcte

Question 17 (3 points)

Détailler le calcul de \overrightarrow{B} en expliquant comment vous avez obtenu $\overrightarrow{\mathrm{rot}}\overrightarrow{E}$.


Répondez sur la feuille correspondante, à la fin du sujet.

Pavé infini (2 points)

Un pavé d'épaisseur e et de largeur et longueur infinies, est parcouru par un courant (de vecteur densité de courant \vec{j} uniforme et constant) comme détaillé sur la figure ci-dessous.

Le courant circule dans le sens de l'axe (Oy) orienté.

On repère un point M de l'espace dans la base de coordonnées cartésiennes : $(\overrightarrow{u}_x, \overrightarrow{u}_y, \overrightarrow{u}_z)$. Le plan Oxy est le plan médian du pavé ; l'axe Oz est perpendiculaire à ses faces.

Soit $\overrightarrow{B}(M)$, le champ magnétique créé par cette distribution de courants en tout point M(x,y,z) de l'espace.

Question 18 (1 point)

En cherchant les plans de symétrie et d'antisymétrie du champ magnétique, on trouve que :

- A Le plan parallèle au plan (yOz) en M est un plan d'antisymétrie.
- B Le champ magnétique $\overrightarrow{B}(M)$ est perpendiculaire au plan parallèle à (xOz) en M.

en M est un plan de symétrie.

- Le champ magnétique $\overrightarrow{B}(M)$ est perpendiculaire au plan (yOz) en M.
- E Aucune de ces réponses n'est correcte.

Question 19 (1 point)

De plus, en regardant les invariances, le vecteur champ magnétique $\overrightarrow{B}(M)$ s'écrit :

$$\boxed{\mathbf{A}} \overrightarrow{B}(M) = B(z) \overrightarrow{u}_{y}$$

$$\boxed{\mathsf{B}} \ \overrightarrow{B}(M) = B(x,y) \overrightarrow{u}_z$$

$$\overrightarrow{B}(M) = B(z)\overrightarrow{u}_x$$

$$\boxed{\mathsf{D}} \ \overrightarrow{B}(M) = B(x,y) \overrightarrow{u}_x$$

E Aucune de ces réponses n'est correcte.

Électromagnétisme - PréIng2 - CC3 - 2024/2025

NOM:
Prénom :
nº Groupe et filière :
Nom du chargé de TD :

codage du nº étudiant *horizontalement* (dans le sens de lecture)

1^{er} chiffre du nº étudiant \neg	Dernier chiffre du nº étudiant
0 0 0	0 0 0 0
1 1 1	1 1 1 1
2 2 2	2 2 2 2 2
3 3 3	3 3 3 3
4 4 4	4 4 4 4 4
5 5 5	5 5 5 5 5
$\begin{bmatrix} 6 \end{bmatrix} \begin{bmatrix} 6 \end{bmatrix} \begin{bmatrix} 6 \end{bmatrix}$	6 6 6 6
7 7 7	7 7 7 7 7
8 8 8	8 8 8 8 8
9 9 9	9 9 9 9

sens de remplissage du nº étudiant

Réponses au QCM

Les réponses au QCM ne doivent être apportées que sur cette feuille. La copie ne sera corrigée que si :

- elle comporte vos nom, prénom et groupe;
- les cases sont complètement coloriées avec un stylo noir;
- la feuille-réponse ne comporte pas de ratures.

Question 1 A B K D E

Question 2 A K C D

Question 3 A B K D

Question 4 A B K D E

Question 5 A B K D E F G

Question 6 A B K D

Question 7 A B K D E

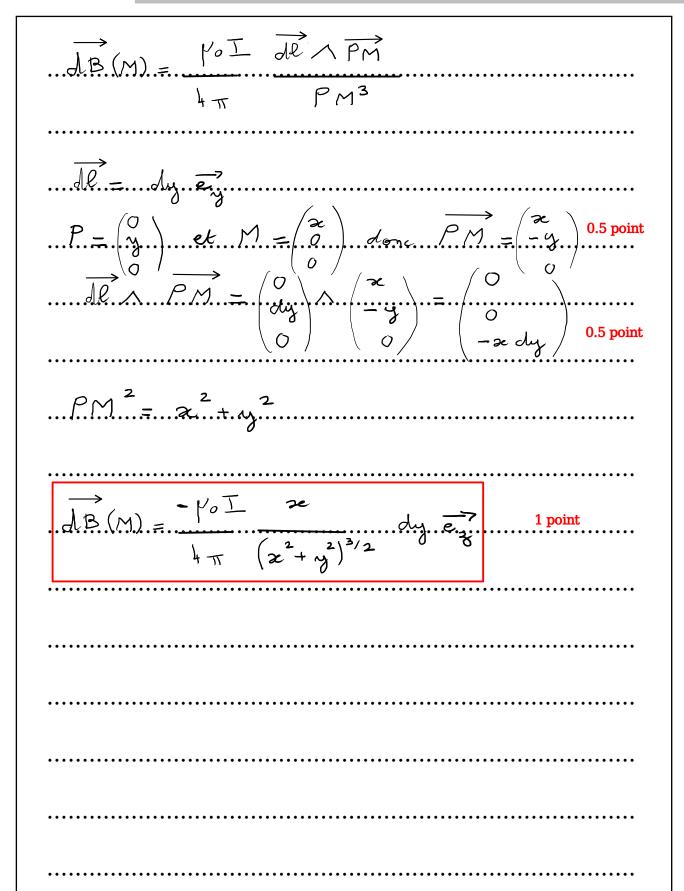
Question 9 A B C D E X G H I

Question 10 X B C D E

Question 11 A X C D

Question 12 A B K D E F G

Question 14 A B C M E


Question 15 A B C D E F G X I

Question 16 A B C D X F G

Question 18 A B C M E

Question 19 A B K D E

Question 8 Champ magnétostatique élémentaire 🔀 🕱 🕱 🕱 Réservé à l'enseign

Question 13

Force de Lorentz 25 25 Réservé à l'enseignant

.B. = .B
don.
$\overrightarrow{F}_{1} = q \overrightarrow{N} \wedge \overrightarrow{B} = q \cdot \begin{pmatrix} 0 \\ N \\ 0 \end{pmatrix} \wedge \begin{pmatrix} 0 \\ 0 \\ \beta_{3} \end{pmatrix} = 0.5 \text{ point}$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
•••••••
•••••
•••••••••••••••••••••••••••••••••••••••
•••••••••••••••••••••••••••••••••••••••
•••••••••••••••••••••••••••••••••••••••
••••••
•••••••••••••••••••••••••••••••••••••••

Question 17

\overrightarrow{B} avec $\overrightarrow{\mathrm{rot}}\overrightarrow{E}$ [25] [25] [X] X Réservé à l'en

$\vec{E} = E e e \vec{e}$
$\frac{\overrightarrow{At} - \beta z}{3z} = \frac{\partial E_3}{\partial z} = \frac{\beta E_3}{\delta z} = \frac{\beta E_3}{\delta z} = \frac{\partial E_3}{\delta z} = \partial E_3$
st d'agrès l'équation de Moxwell: Tet É = - DB = B E e e en
1 point $ \frac{1}{\beta} = -\frac{\beta}{\beta} = \frac{\alpha \xi - \beta z}{\beta} $ $ = -\frac{\beta}{\alpha} = \frac{1}{\beta} = $

Feuille supplémentaire - (indiquer le numéro de la question rédigée)