Mécanique du point matériel

PI1-MI/GC - CC1 - 2023/2024

Durée: 1h30' (2h en cas de tiers-temps)

Sont interdits:

- les documents ;
- tous les objets électroniques (calculatrice, téléphone, tablette, ordinateur...) de même que les montres connectées;
- les déplacements et les échanges.

Consignes:

Seules les dernières feuilles doivent être rendues :

- 1. la feuille-réponse du QCM :
 - (a) y indiquer vos nom, prénom et groupe dès le début officiel de l'épreuve ;
 - (b) remplir <u>complètement</u> au <u>stylo noir</u> la case correspondant à la bonne réponse (une case <u>simplement</u> cochée ne <u>sera</u> pas comptabilisée) ;
 - (c) chaque question ne comporte qu'une seule réponse correcte;
 - (d) il n'y a pas de point négatif pour une réponse incorrecte;
- 2. le cas échéant, les feuilles de réponses aux questions ouvertes (icône 4).

Le cas échéant, vos réponses doivent être justifiées. Une attention particulière sera portée à la qualité et au soin de la rédaction.

Vérifier que ce document comporte 10 pages et 17 questions.

Le barème est donné à titre indicatif et est susceptible d'être modifié.

Considérations générales (9 points)

Pour les trois questions suivantes, on se place dans un référentiel \mathcal{R} muni des repères cartésien $(O, \overrightarrow{u}_x, \overrightarrow{u}_y)$ et polaire $(O, \overrightarrow{u}_r, \overrightarrow{u}_\theta)$.

Question 1 (1 point)

Les vecteurs de la base polaire s'écrivent dans la base cartésienne :

$$\boxed{\mathbf{A}} \ \overrightarrow{u}_r = \cos(\theta) \ \overrightarrow{u}_r + \sin(\theta) \ \overrightarrow{u}_\theta \ \text{et} \ \overrightarrow{u}_\theta = -\sin(\theta) \ \overrightarrow{u}_r + \cos(\theta) \ \overrightarrow{u}_\theta$$

$$\boxed{\mathbf{B}} \ \overrightarrow{u}_r = \sin(\theta) \ \overrightarrow{u}_x + \cos(\theta) \ \overrightarrow{u}_y \ \text{et} \ \overrightarrow{u}_\theta = -\cos(\theta) \ \overrightarrow{u}_x + \sin(\theta) \ \overrightarrow{u}_y$$

$$\boxed{\textbf{C}} \ \overrightarrow{u}_r = \cos(\theta) \ \overrightarrow{u}_x + \sin(\theta) \ \overrightarrow{u}_y \ \text{et} \ \overrightarrow{u}_\theta = -\sin(\theta) \ \overrightarrow{u}_x + \cos(\theta) \ \overrightarrow{u}_y$$

D Aucune des réponses précédentes n'est correcte.

Question 2 4 (2 points)

Dans la base polaire, exprimer $\frac{d\vec{u}_r}{dt}$ et $\frac{d\vec{u}_{\theta}}{dt}$ (détailler vos calculs).

Question 3 4 (3 points)

Dans la base polaire, exprimer les vecteurs position \overrightarrow{OM} , vitesse \overrightarrow{v} et accélération \overrightarrow{a} (détailler vos calculs).

Question 4 (1 point)

Soit un ressort d'extrémités H et M, de raideur k, de longueur ℓ et de longueur à vide ℓ_0 . On note $\overrightarrow{u}_{\text{HM}}$ un vecteur unitaire de H vers M. La force \overrightarrow{F} exercée par le ressort sur M s'écrit :

$$\boxed{\mathbf{A}} \ k \left(\ell - \ell_0 \right) \overrightarrow{u}_{\mathrm{HM}}$$

$$\boxed{\mathbf{B}} - k \left(\ell - \ell_0\right) \overrightarrow{u}_{\mathrm{HM}}$$

$$\boxed{\mathbf{C}} - k (\ell - \ell_0)^2 \, \overrightarrow{u}_{\mathrm{HM}}$$

D Aucune des réponses précédentes n'est correcte.

Question 5 (1 point)

Dans un référentiel galiléen, le mouvement du centre d'inertie d'un système isolé est :

- A rectiligne mais non-uniforme
- B rectiligne et uniforme
- C non-rectiligne mais uniforme
- D On ne peut pas conclure.

Question 6 (1 point)

Dans l'expression de la force de frottement fluide $\vec{F} = -\alpha \vec{v}$, le coefficient α est :

- A positif ou négatif selon les cas
- B nécessairement négatif
- C nécessairement positif

Platine CD (6 points)

Dans le référentiel terrestre \mathcal{R}_T , ici approximé galiléen, on considère la situation suivante : une platine CD initialement au repos (instant t_i) fait deux tours avec une accélération angulaire constante $\ddot{\theta}_0$ jusqu'à atteindre (instant t_f) une vitesse angulaire constante $\dot{\theta}_0$ pour la lecture du disque.

Question 7 (1 point)

 $\forall t \in [t_i; t_f]$, l'angle $\theta(t)$ est égal à :

$$\boxed{\mathbf{A}} \ \theta(t_i) - \frac{\ddot{\theta_0}}{2} (t - t_i)^2$$

$$\boxed{\mathbf{B}} \ \theta(t_i) + \frac{\ddot{\theta}_0}{2} (t - t_i)^2$$

$$\boxed{\mathbf{C}} \frac{\ddot{\theta_0}}{2} (t - t_i)^2$$

D Aucune des réponses précédentes n'est correcte.

Question 8 (1 point)

La durée $t_f - t_i$ de la phase d'accélération angulaire est donc égale à :

$$\boxed{\mathbf{A}} \ \frac{\dot{\theta}_0}{8\pi}$$

$$\boxed{\mathbf{B}} \ \frac{8\pi}{\dot{\theta}_0}$$

 $C \frac{4\pi}{\dot{\theta}_0}$

D Aucune des réponses précédentes n'est correcte.

Question 9 (1 point)

 $\ddot{\theta}_0$ est donc égale à :

$$\boxed{\mathbf{A}} - \frac{\dot{\theta}_0^2}{8\pi}$$

$$\boxed{\mathbf{B}}$$
 0

$$\boxed{\text{C}} \frac{\dot{\theta}_0^2}{8\pi}$$

D Aucune des réponses précédentes n'est correcte.

Question 10 (1 point)

 $\forall t \in [t_i; t_f]$, la vitesse $\overrightarrow{v}(t)$ d'un point du disque à distance r du centre est égale à :

$$\boxed{\mathbf{A}} r \ddot{\theta}_0 (t - t_i) \overrightarrow{u}_r$$

$$\boxed{\mathbf{B}} r \ddot{\theta}_0 (t - t_i) \overrightarrow{u}_{\theta}$$

$$\boxed{\mathbb{C}} \dot{r} \overrightarrow{u}_r$$

D Aucune des réponses précédentes n'est correcte.

Question 11 (1 point)

 $\forall t \in [t_i; t_f]$, l'accélération $\overrightarrow{a}(t)$ d'un point du disque à distance r du centre est égale à :

$$\boxed{\mathbf{A}} - r \left[\ddot{\theta}_0 \left(t - t_i \right) \right]^2 \overrightarrow{u}_r + r \ddot{\theta}_0 \overrightarrow{u}_{\theta}$$

$$\boxed{\mathbf{B}} \left\{ \ddot{r} - r \left[\ddot{\theta}_0 \left(t - t_i \right) \right]^2 \right\} \overrightarrow{u}_r$$

$$\boxed{\mathbb{C}} -r \left[\ddot{\theta}_0 \left(t - t_i \right) \right]^2 \vec{u}_r$$

D Aucune des réponses précédentes n'est

Question 12 (1 point)

 $\forall\,t>t_f,$ l'accélération $\overrightarrow{a}(t)$ d'un point du disque à distance r du centre est égale à :

$$\boxed{\mathbf{A}} \ \ddot{r} \ \overrightarrow{u}_r$$

$$\boxed{\mathbf{B}} - r \left[\ddot{\theta}_0 \left(t - t_i \right) \right]^2 \vec{u}_r$$

$$\boxed{\mathbf{C}} - r \left[\ddot{\theta}_0 \left(t - t_i \right) \right]^2 \vec{u}_r + r \ddot{\theta}_0 \vec{u}_{\theta}$$

D Aucune des réponses précédentes n'est correcte.

Satellite géostationnaire (8 points)

Dans le référentiel géocentrique \mathcal{R}_g , ici approximé galiléen, on considère la situation suivante : un satellite est en orbite géostationnaire s'il se trouve à chaque instant à la verticale et à distance constante d'un même point de la surface terrestre.

Le satellite est assimilé à un point matériel de masse m_S , à distance h_S au-dessus de la surface terrestre, et soumis uniquement à la gravitation terrestre. La Terre est en rotation uniforme sur elle-même, de période T_T .

Dans ce qui suit, on cherche entre autres à déterminer h_S .

Données:

- constante de gravitation universelle $\mathcal{G} \approx 6 \times 10^{-11} \,\mathrm{m}^3 \cdot \mathrm{kg}^{-1} \cdot \mathrm{s}^{-2}$
- masse de la Terre $m_T \approx 6 \times 10^{24} \, \mathrm{kg}$
- rayon de la Terre $R_T \approx 6 \times 10^3 \, \mathrm{km}$

Question 13 4 (1 point)

Exprimer la vitesse angulaire θ_T de rotation de la Terre sur elle-même en fonction de T_T .

Question 14 \(\bigau \) (2 points)

Exprimer, en justifiant votre réponse, l'accélération \overrightarrow{a}_S du satellite en fonction des paramètres du problème.

Question 15 4 (2 points)

À partir du Principe Fondamental de la Dynamique, exprimer h_S en fonction des paramètres du problème.

Question 16 \clubsuit (1 point)

En déduire un ordre de grandeur numérique de h_S .

Question 17 \(\bigau \) (2 points)

Exprimer la norme v_S de la vitesse du satellite en fonction des paramètres du problème, puis en donner un ordre de grandeur numérique.

Mécanique du point matériel - PI1-MI/GC - CC1 - 2023/2024

NOM:	
Prénom:	
Groupe :	

CODAGE DU N°ÉTUDIANT HORIZONTALEMENT (DANS LE SENS DE LECTURE)

Premier chiffre du n°étudiant		Dernier chiffre du n°étudiant
	0 0 0 0 0 0 0	$\boxed{0}$
		1
	2 2 2 2 2 2 2	2
	3 3 3 3 3 3	3
	4 4 4 4 4 4 4	$\boxed{4}$
	5 5 5 5 5 5	5
	6 6 6 6 6 6	6
	7 7 7 7 7 7 7	7
	8888888	8
	9 9 9 9 9 9	9
	SENS DE REMPLISSAGE DU N°ÉTUDIANT	} →

Les réponses au QCM ne doivent être apportées que sur cette feuille. La copie ne sera corrigée que si :

- elle comporte vos nom, prénom et groupe;
- les cases sont complètement coloriées avec un stylo noir;
- la feuille-réponse ne comporte pas de ratures.

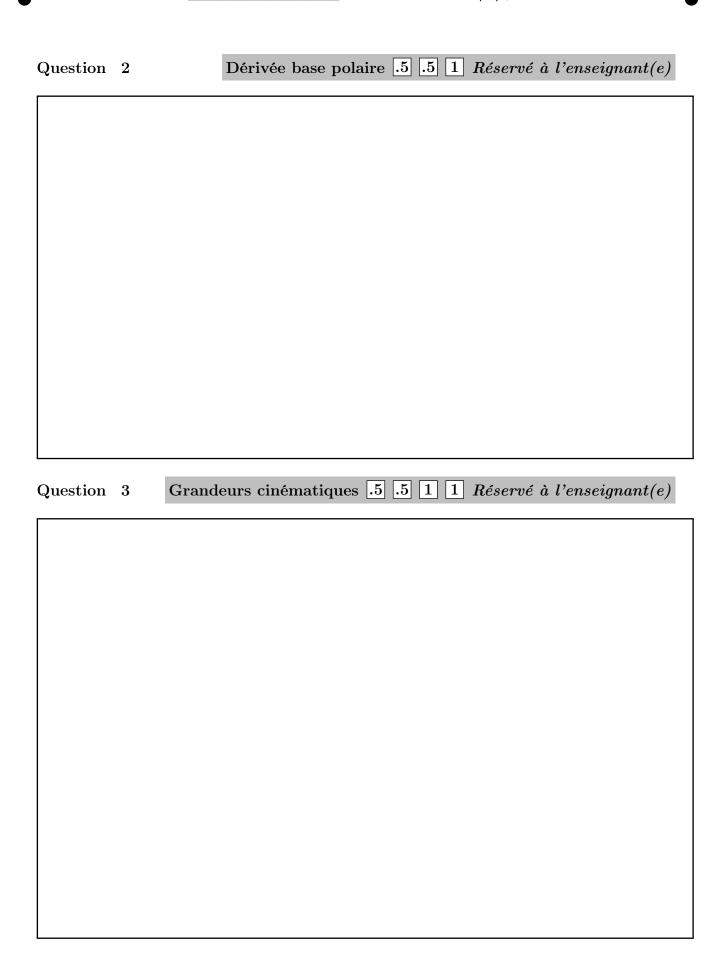
Question 1 A B C D

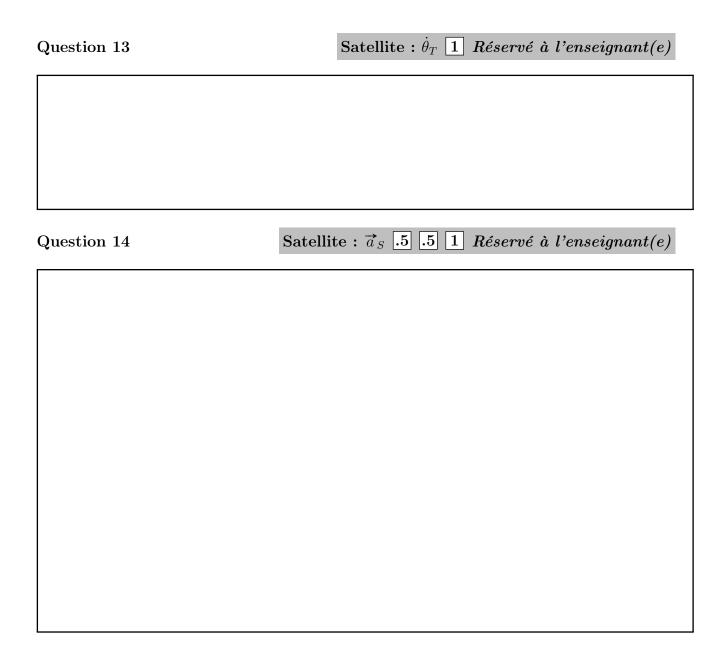
Question 4 A B C D

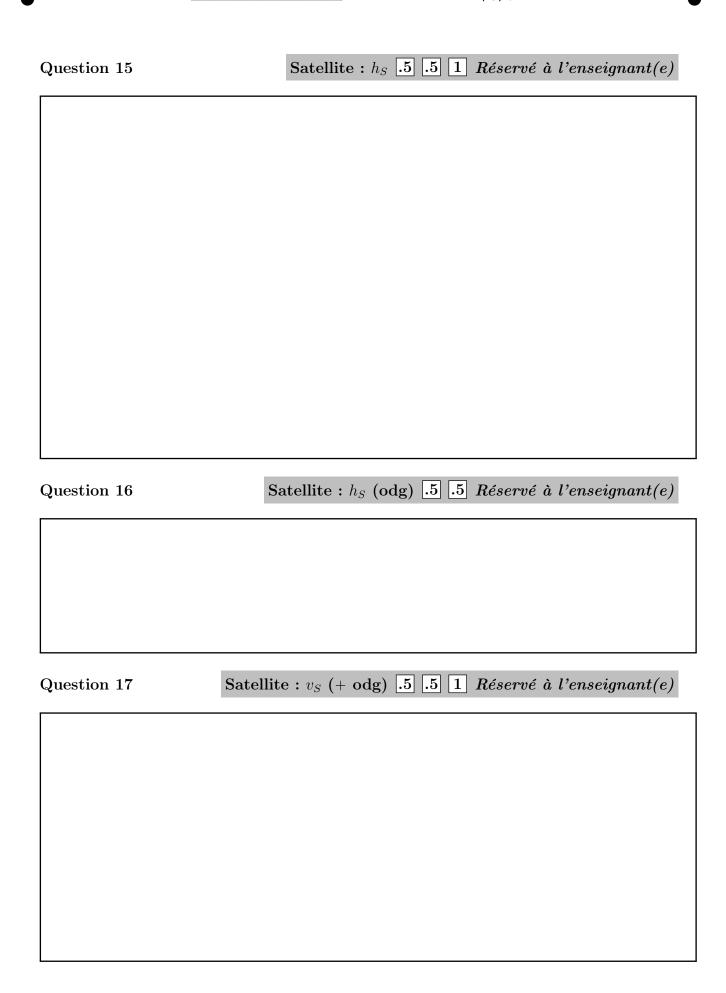
Question 5 A B C D

Question 6 A B C

Question 7 A B C D


Question 8 A B C D


Question 9 A B C D


Question 10 A B C D

Question 11 A B C D

Question 12 A B C D

