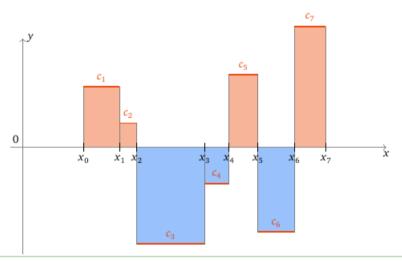
Chapitre 6: Intégration sur un segment

I- Intégrale d'une fonction en escalier :

Définition.

On appelle **subdivision** s d'un segment [a, b] toute suite finie $s = (x_0, x_1, \dots, x_n)$ de nombres réels tels que :

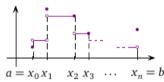
$$a = x_0 < x_1 < \dots < x_n = b.$$



Définition (Fonction en escalier, subdivision adaptée)

On dit qu'une fonction $f:[a,b] \longrightarrow \mathbb{C}$ est en escalier si pour une certaine subdivision $(x_0, ..., x_n)$ de [a, b], dite adaptée à f:

f est constante sur $]x_i, x_{i+1}[$ pour tout $i \in [0, n-1][$.



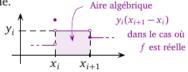
Théorème (Propriétés élémentaires des fonctions en escalier) Soient $f:[a,b] \longrightarrow \mathbb{C}$ et $g:[a,b] \longrightarrow \mathbb{C}$ en escalier.

- Lorsqu'on ajoute un nombre fini de points à une subdivision de [a,b] adaptée à f, le résultat est encore une subdivision de [a, b] adaptée à f.
 - A fortiori, la réunion d'une subdivision de [a, b] adaptée à f et d'une subdivision de [a, b] adaptée à g est une subdivision de [a, b] adaptée à f ET à g.
- Pour tous $\lambda, \mu \in \mathbb{C}$, $\lambda f + \mu g$ est une fonction en escalier sur [a, b], de même que |f|, Re(f), Im(f) et fg.

Définition-théorème (Intégrale d'une fonction en escalier) Soit $f:[a,b] \longrightarrow \mathbb{C}$ en escalier. Soit en outre (x_0,\ldots,x_n) une subdivision de [a,b] adaptée à f. Si pour tout $i\in [0,n-1]$, on note y_i la valeur de f sur $]x_i,x_{i+1}[$, alors le nombre

complexe : $\sum_{i=0}^{n-1} y_i(x_{i+1}-x_i)$ ne dépend pas de la subdivision (x_0,\ldots,x_n) choisie.

On l'appele l'intégrale de f sur [a,b], notée : $\int_{[a,b]} f$ ou $\int_{[a,b]} f(t) dt$.



Théorème (Propriétés de l'intégrale d'une fonction en escalier) Soient $f:[a,b]\longrightarrow \mathbb{C}$ et $g:[a,b]\longrightarrow \mathbb{C}$ en escalier.

(i) Linéarité : Pour tous
$$\lambda, \mu \in \mathbb{C}$$
 :
$$\int_{[a,b]} (\lambda f + \mu g) = \lambda \int_{[a,b]} f + \mu \int_{[a,b]} g.$$

(ii) Inégalité triangulaire :
$$\left| \int_{[a,b]} f \right| \leq \int_{[a,b]} |f|.$$

(iii) Relation de Chasles : Pour tout
$$c \in [a, b]$$
 :
$$\int_{[a,b]} f = \int_{[a,c]} f + \int_{[c,b]} f.$$

(iv) Lien avec les parties réelle et imaginaire :
$$\int_{[a,b]} f = \int_{[a,b]} \text{Re}(f) + i \int_{[a,b]} \text{Im}(f).$$

Démonstration Donnons-nous $\lambda, \mu \in \mathbb{C}$, $c \in [a, b]$ et une subdivision (x_0, \dots, x_n) de [a, b] adaptée à f ET à g — mais donc aussi à $\lambda f + \mu g$, |f|, Re(f) et Im(f).

(i)
$$\int_{[a,b]} (\lambda f + \mu g) = \sum_{i=0}^{n-1} \underbrace{(\lambda f + \mu g) \left(\frac{x_i + x_{i+1}}{2}\right)}_{i=0} (x_{i+1} - x_i)$$

$$= \lambda \sum_{i=0}^{n-1} \underbrace{f \left(\frac{x_i + x_{i+1}}{2}\right)}_{\text{Valeurde } f \text{ sur }]x_i, x_{i+1}[} (x_{i+1} - x_i) + \mu \sum_{i=0}^{n-1} \underbrace{g \left(\frac{x_i + x_{i+1}}{2}\right)}_{\text{Valeurde } g \text{ sur }]x_i, x_{i+1}[} (x_{i+1} - x_i) = \lambda \int_{[a,b]} f + \mu \int_{[a,b]} g.$$

(ii) D'après l'inégalité triangulaire sur ℂ:

$$\left| \int_{[a,b]} f \right| = \left| \sum_{i=0}^{n-1} f\left(\frac{x_i + x_{i+1}}{2}\right) (x_{i+1} - x_i) \right| \leq \sum_{i=0}^{n-1} \left| f\left(\frac{x_i + x_{i+1}}{2}\right) \right| (x_{i+1} - x_i) = \int_{[a,b]} |f|.$$

(iii) Quitte à ajouter le point c à la subdivision (x_0,\ldots,x_n) , on peut supposer que : $x_k=c$ pour un certain $k\in [\![0,n]\!]$. La fonction $f_{\lfloor [a,c\rfloor}$ est alors en escalier sur [a,c] de subdivision adaptée (x_0,\ldots,x_k) , et la fonction $f_{\lfloor [c,b]}$ l'est sur [c,b] de subdivision adaptée (x_k,\ldots,x_n) . Enfin :

$$\begin{split} &\int_{[a,b]} f = \sum_{i=0}^{n-1} f\left(\frac{x_i + x_{i+1}}{2}\right) (x_{i+1} - x_i) = \sum_{i=0}^{k-1} f\left(\frac{x_i + x_{i+1}}{2}\right) (x_{i+1} - x_i) + \sum_{i=k}^{n-1} f\left(\frac{x_i + x_{i+1}}{2}\right) (x_{i+1} - x_i) = \int_{[a,c]} f + \int_{[c,b]} f \left(\frac{x_i + x_{i+1}}{2}\right) (x_{i+1} - x_i) \\ &= \sum_{i=0}^{n-1} \operatorname{Re}(f) \left(\frac{x_i + x_{i+1}}{2}\right) (x_{i+1} - x_i) + i \sum_{i=0}^{n-1} \operatorname{Im}(f) \left(\frac{x_i + x_{i+1}}{2}\right) (x_{i+1} - x_i) = \int_{[a,b]} \operatorname{Re}(f) + i \int_{[a,b]} \operatorname{Im}(f). \end{split}$$

II- Intégrale d'une fonction continue (par morceaux) :

Théorème 3

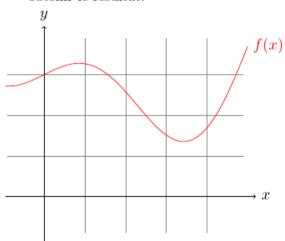
Soient $f:[a,b]\to\mathbb{R}$ continue sur [a,b] et $\varepsilon>0$. Alors il existe $\theta:[a,b]\to\mathbb{R}$ en escaliers telle que $\forall x\in[a,b],\,|f(x)-\theta(x)|\leq\epsilon$.

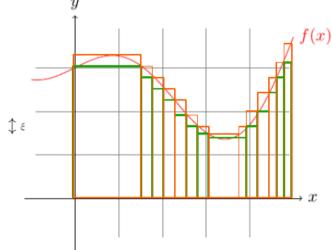
Propriété 4

Soit $f:[a,b]\to\mathbb{R}$ continue sur [a,b]. Pour tout $\varepsilon>0$, il existe deux fonctions $\varphi,\psi\in\mathcal{E}([a,b],\mathbb{R})$ telles que :

$$\varphi \le f \le \psi$$
 et $0 \le \psi - \varphi \le \varepsilon$.

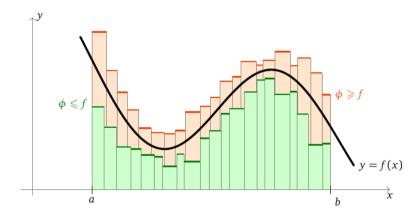
Preuve. D'après le théorème précédent, on a θ en escaliers telle que $\forall x \in [a, b], |f(x) - \theta(x)| \leq \frac{\epsilon}{2}$. $\theta(x) - \frac{\epsilon}{2} \leq f(x) \leq \theta(x) + \frac{\epsilon}{2}$. On pose alors les fonctions en escalier $\varphi = \theta - \frac{\epsilon}{2}$ et $\psi = \theta + \frac{\epsilon}{2}$ pour obtenir le résultat.





On suppose à présent que $f:[a,b] \to \mathbb{R}$ est une fonction bornée quelconque. On définit deux nombres réels :

$$I^{-}(f) = \sup \left\{ \int_{a}^{b} \phi(x) \, dx \mid \phi \text{ en escalier et } \phi \leqslant f \right\}$$
$$I^{+}(f) = \inf \left\{ \int_{a}^{b} \phi(x) \, dx \mid \phi \text{ en escalier et } \phi \geqslant f \right\}$$



Théorème 5 -

Si $f:[a,b]\to\mathbb{R}$ est continue, alors :

- $A^-_{[a,b]}(f) = \left\{ \int_{[a,b]} \varphi \mid \varphi \in \mathcal{E}^-_{[a,b]}(f) \right\}$ admet une borne supérieure,
- $A_{[a,b]}^+(f)=\left\{\int_{[a,b]}\psi\ |\ \psi\in\mathcal{E}_{[a,b]}^+(f)
 ight\}$ admet une borne inférieure,

et ces deux bornes sont égales.

Preuve. La fonction f étant continue sur le segment [a,b], elle est bornée sur [a,b]. posons $m=\inf_{x\in[a,b]}f(x)$ et $M=\sup_{x\in[a,b]}f(x)$.

 \$\mathcal{E}_{[a,b]}^-(f)\$ est non vide puisqu'il contient la fonction constante m. Ainsi \$I_{[a,b]}^-(f)\$ est une partie non vide de ℝ. De plus pour tout \$\varphi \in \mathcal{E}_{[a,b]}^-(f)\$, on a \$\varphi \le f \le M\$. Donc :

$$\int_{[a,b]}\varphi\leq\int_{[a,b]}M=M(b-a).$$

L'ensemble $A_{[a,b]}^-(f)$ est donc une partie non vide de $\mathbb R$ et majorée (par M(b-a)). Il possède donc une borne supérieure que l'on note α .

- De même, A⁺_[a,b](f) est une partie non vide de ℝ et minorée par m(b − a). Elle possède donc une borne inférieure que l'on note β.
- Puisque pour tout $(\varphi, \psi) \in \mathcal{E}^-_{[a,b]}(f) \times \mathcal{E}^+_{[a,b]}(f)$, $\varphi \leq \psi$, on a $\int_{[a,b]} \varphi \leq \int_{[a,b]} \psi$. Ainsi $\int_{[a,b]} \psi$ est un majorant de $A^-(f)$, sa borne supérieure α est donc plus petite que $\int_{[a,b]} \psi$. On obtient :

$$\forall \psi \in \mathcal{E}^+_{[a,b]}(f), \quad \alpha \leq \int_{[a,b]} \psi.$$

De même, α est un minorant de $A^+_{[a,b]}(f)$, et β est le plus grand des minorants de cette partie. Donc $\alpha \leq \beta$.

• Soit $\epsilon > 0$. On sait qu'il existe $\varphi \in \mathcal{E}^-_{[a,b]}(f)$ et $\psi \in \mathcal{E}^+_{[a,b]}(f)$ telles que pour tout $x \in [a,b]$, $\psi(x) - \varphi(x) \le \epsilon$. On a alors :

$$\int_{[a,b]} \psi - \int_{[a,b]} \varphi \le \epsilon (b-a).$$

Or par définition de α et β , on a :

$$\int_{[a,b]}\varphi\leq\alpha\leq\beta\leq\int_{[a,b]}\psi.$$

D'où pour tout $\varepsilon > 0$, $0 \le \beta - \alpha \le \int_{[a,b]} \psi - \int_{[a,b]} \varphi \le \epsilon(b-a)$. Finalement, on a bien $\alpha = \beta$.

Définition.

Soit $f : [a, b] \to \mathbb{R}$ une fonction continue. On appelle **intégrale de** f **sur** [a, b] le nombre réel noté $\int_{[a,b]} f$ défini par :

$$\int_{[a,b]} f = \sup \left\{ \int_{[a,b]} \varphi \mid \varphi \in \mathcal{E}^-_{[a,b]}(f) \right\} = \inf \left\{ \int_{[a,b]} \psi \mid \psi \in \mathcal{E}^+_{[a,b]}(f) \right\}$$

- Propriété 6 (Linéarité) -

Soient $f, g : [a, b] \to \mathbb{R}$ continues et $(\lambda, \mu) \in \mathbb{R}^2$.

$$\int_{[a,b]} (\lambda f + \mu g) = \lambda \int_{[a,b]} f + \mu \int_{[a,b]} g$$

Lemme. Soit $\varepsilon > 0$. Si $f: [a, b] \to \mathbb{R}$ continue et $\theta \in \mathcal{E}([a, b], \mathbb{R})$ telles que $|f - \theta| \le \varepsilon$, alors

$$\left| \int_{[a,b]} f - \int_{[a,b]} \theta \right| \le (b-a)\varepsilon$$

Preuve du Lemme. On a $\theta - \varepsilon \le f \le \theta + \varepsilon$, d'où (par définition de l'intégrale) :

$$\int_{[a,b]} (\theta - \varepsilon) \leq \int_{[a,b]} f \leq \int_{[a,b]} (\theta + \varepsilon).$$

Par linéarité de l'intégrale des fonctions en escalier :

$$\left| \int_{[a,b]} f - \int_{[a,b]} \theta \right| \le (b-a)\varepsilon.$$

Preuve. Soient $\theta_1, \theta_2 \in \mathcal{E}([a, b], \mathbb{R})$ telles que :

$$|f - \theta_1| \le \varepsilon \text{ et } |g - \theta_2| \le \varepsilon.$$

Par le lemme :

(*)
$$\left| \int_{[a,b]} f - \int_{[a,b]} \theta_1 \right| \le (b-a)\varepsilon \text{ et } \left| \int_{[a,b]} g - \int_{[a,b]} \theta_2 \right| \le (b-a)\varepsilon.$$

Posons $h = \lambda f + \mu g$ et $\theta = \lambda \theta_1 + \mu \theta_2$. On a :

$$|h - \theta| \le (|\lambda| + |\mu|)\varepsilon$$
.

Par le lemme :

$$\left| \int_{[a,b]} h - \int_{[a,b]} \theta \right| \leq (b-a)(|\lambda| + |\mu|)\varepsilon.$$

Posons $I = \int_{[a,b]} \theta = \lambda \int_{[a,b]} \theta_1 + \mu \int_{[a,b]} \theta_2$ (par linéarité pour les fonctions en escalier). Grâce à (*), on a :

 $\left|\lambda \int_{[a,b]} f + \mu \int_{[a,b]} g - I\right| \le (b-a)(|\lambda| + |\mu|)\varepsilon.$

Finalement on obtient :

$$\begin{split} \Delta &= \left| \int_{[a,b]} h - (\lambda \int_{[a,b]} f + \mu \int_{[a,b]} g) \right| \\ &= \left| \int_{[a,b]} h - I + (I - \lambda \int_{[a,b]} f - \mu \int_{[a,b]} g) \right| \\ &= \left| \int_{[a,b]} h - I \right| + \left| I - \lambda \int_{[a,b]} f - \mu \int_{[a,b]} g) \right| \\ &< 2(b-a)(|\lambda| + |\mu|)\varepsilon. \end{split}$$

Comme c'est vrai quelque soit $\varepsilon > 0$, on en déduit $\Delta = 0$, et donc la linéarité de l'intégrale.

Propriété 7 (Relation de Chasles) —

Soient $f:[a,b] \to \mathbb{R}$ continues et $c \in [a,b]$.

$$\int_{[a,b]} f = \int_{[a,c]} f + \int_{[c,b]} f.$$

Preuve. Soit $\varphi \in \mathcal{E}^{-}_{[a,b]}(f)$. On a alors :

$$\varphi_{|[a,c]} \in \mathcal{E}^{-}_{[a,c]}(f) \text{ et } \varphi_{|[c,b]} \in A^{-}_{[c,b]}(f).$$

Par définition de l'intégrale, on obtient :

$$\int_{[a,b]} \varphi = \int_{[a,c]} \varphi + \int_{[c,b]} \varphi \le \int_{[a,c]} f + \int_{[c,b]} f.$$

Ainsi $\int_{[a,c]} f + \int_{[c,b]} f$ est un majorant de $A^-_{[a,b]}(f)$. Par définition de la borne supérieure :

$$\int_{[a,b]} f \le \int_{[a,c]} f + \int_{[c,b]} f.$$

En appliquant (linéarité) ce résultat à -f, on en déduit l'inégalité inverse, et donc :

$$\int_{[a,b]} f = \int_{[a,c]} f + \int_{[c,b]} f.$$

Notation. Soient a et b deux réels quelconques (en particulier on ne suppose plus nécessairement a < b). Soit f une fonction continue entre a et b. On définit le réel $\int_a^b f(x)dx$ par :

- si a < b, $\int_a^b f(x)dx = \int_{[a,b]} f(x)dx$;
- si a = b, \(\int_a^b f(x) dx = 0 \);
- si b < a, $\int_{a}^{b} f(x)dx = \int_{[b,a]} f(x)dx$.

La relation de Chasles et la linéarité sont alors vraies pour a, b, c quelconques.

(1)
$$f \ge 0$$
 et $a \le b \Rightarrow \int_a^b f(x)dx \ge 0$

Soient
$$f, g: I \to \mathbb{R}$$
 continues sur un intervalle I et $a, b \in I$.

(1) $f \ge 0$ et $a \le b \Rightarrow \int_a^b f(x) dx \ge 0$;

(2) $f \le g$ et $a \le b \Rightarrow \int_a^b f(x) dx \le \int_a^b g(x) dx$;

(3) $a \le b \Rightarrow \left| \int_a^b f(x) dx \right| \le \int_a^b |f(x)| dx$;

(4) Si $a \le b$ et $m \le f \le M$ entre a et b , alors $m(b-a) \le \int_a^b f(x) dx \le M(b-a)$.

(3)
$$a \le b \Rightarrow \left| \int_{a}^{b} f(x)dx \right| \le \int_{a}^{b} |f(x)|dx$$

Preuve.

 Puisque f≥ 0, alors φ = 0 est une fonction en escalier sur [a, b] telle que φ≤ f. Par définition de l'intégrale de f sur [a, b], on en déduit que

$$\int_{a}^{b} f(x)dx \ge \int_{a}^{b} \varphi(x)dx = 0.$$

(2) On applique le point précédent à la fonction h = g − f ≥ 0 :

$$\int_{a}^{b} h(x)dx \ge 0 \Rightarrow \int_{a}^{b} g(x)dx \ge \int_{a}^{b} f(x)dx$$

par linéarité de l'intégrale.

(3) On a pour tout x ∈ [a,b], −|f(x)| ≤ f(x) ≤ |f(x)|. D'où par croissance de l'intégrale :

$$-\int_a^b |f(x)| dx \le \int_a^b f(x) dx \le \int_a^b |f(x)| dx.$$

Ainsi, on obtient $\left| \int_{a}^{b} f(x) dx \right| \le \int_{a}^{b} |f(x)| dx$.

(4) Il suffit de prendre l'intégrale dans les inégalités m ≤ f ≤ M.

Remarque. La majoration suivante, vraie également si b < a, peut être utile :

$$\left| \int_{a}^{b} f(x)dx \right| \le \left| \int_{a}^{b} |f(x)|dx \right|$$

Définition.

La valeur moyenne d'une fonction $f : [a, b] \rightarrow \mathbb{R}$ continue est :

$$\mu = \frac{1}{b-a} \int_{[a,b]} f.$$

Remarque. La valeur moyenne est la constante μ qui vérifie $\int_{[a,b]} f = \int_{[a,b]} \mu$.

Propriété 9

Soit $f:[a,b]\to\mathbb{R}$ une fonction continue sur [a,b] et positive. Alors $\int_{[a,b]}f=0$ si et seulement si f est nulle sur [a,b].

Preuve.

- ← Si f est nulle, son intégrale est nulle.
- ⇒ Par contraposition, supposons que f n'est pas nulle sur [a, b] : ∃c ∈ [a, b] tel que f(c) > 0.
 D'après la définition de la continuité de f en c avec ε = f(c)/2 :

$$\exists a \leq \alpha < \beta \leq b, \ \forall x \in [a, b], \ x \in [\alpha, \beta] \Rightarrow |f(x) - f(c)| \leq \varepsilon.$$

Ainsi pour tout $x \in [\alpha, \beta]$, on a $f(x) \le \frac{f(c)}{2}$. En prenant l'intégrale, on en déduit donc que :

$$\int_{a}^{b} f(x)dx \ge \int_{\alpha}^{\beta} f(x)dx \ge \int_{\alpha}^{\beta} \varepsilon dx = (\beta - \alpha)\varepsilon > 0.$$

Remarque. Si f n'est pas supposée continue, le résultat est faux : par exemple f(x) = 0 sur]0,1[et f(0) = f(1) = 1 est positive, non nulle mais $\int_0^1 f = 0$.

III – Calcul intégral :

5.1 Primitives

Définition.

Soient I un intervalle et $f : I \mapsto K$ une fonction continue. On appelle **primitive** de f sur I toute fonction F de classe C^1 sur I et dont la dérivée est f.

Propriété 12 (Lien entre deux primitives d'une même fonction) -

Deux primitives d'une même fonction sur un intervalle différent d'une constante.

Preuve. Si F_1 et F_2 sont deux primitives de la fonction F sur I, alors $(F_1 - F_2)' = F_1' - F_2' = f - f = 0$ donc la fonction $F_1 - F_2$ est constante sur I.

Propriété 13 (Théorème fondamental de l'analyse) —

Soient I un intervalle de \mathbb{R} , $f: I \to \mathbb{K}$ une fonction continue, et $a \in I$.

- (1) La fonction $F: \begin{array}{ccc} I & \to & \mathbb{K} \\ x & \mapsto & \int_a^x f(t)dt \end{array}$ est l'unique primitive de f s'annulant en a.
- (2) Pour toute primitive $F: I \to \mathbb{K}$ de f, on a

$$\int_{-x}^{x} f(t)dt = F(x) - F(a).$$

Preuve.

(1) La fonction F est définie pour tout x ∈ I car f est continue sur [a, x] ou [x, a] (selon que x ≥ a ou x ≤ a). Soit x₀ ∈ I, montrons que F est dérivable en x₀ et que F'(x₀) = f(x₀). On a pour tout x ∈ I :

$$\frac{F(x) - F(x_0)}{x - x_0} - f(x_0) = \frac{1}{x - x_0} \int_{x_0}^x f(t)dt - f(x_0)$$
$$= \frac{1}{x - x_0} \int_{x_0}^x f(t) - f(x_0)dt$$

D'où avec l'inégalité de la moyenne (on vérifie que cette inégalité est aussi vraie si $x < x_0$):

$$\left| \frac{F(x) - F(x_0)}{x - x_0} - f(x_0) \right| = \frac{1}{x - x_0} \int_{x_0}^{x} |f(t) - f(x_0)| dt$$

Or f est continue en x_0 , donc :

$$\forall \varepsilon > 0, \exists \alpha > 0, \forall t \in I, |t - x_0| \le \alpha \Rightarrow |f(t) - f(x_0)| \le \varepsilon.$$

Alors pour tout $x \in I$, $|x - x_0| \le \alpha$, on a pour tout $t \in [x_0, x]$, $|f(t) - f(x_0)| \le \varepsilon$ et en reportant :

$$\left| \frac{F(x) - F(x_0)}{x - x_0} - f(x_0) \right| = \frac{1}{x - x_0} \int_{x_0}^{x} \varepsilon dt \le \varepsilon.$$

Ainsi on a montré que $\lim_{x\to x_0} \frac{F(x) - F(x_0)}{x - x_0} = f(x_0)$. Donc F est dérivable en x_0 et $F'(x_0) = f(x_0)$. Puisque c'est vrai pour tout $x_0 \in I$ et que f est continue, on en déduit finalement que F est de classe C^1 et que F' = f.

Reste à montrer que F est l'unique primitive de f qui s'annule en a. Si G satisfait aussi ces propriétés, alors on a vu qu'il existe $C \in \mathbb{K}$ tel que F = G + C. En évaluant en x = a, on obtient C = 0, et donc F = G.

(2) Soit h : x → F(x) − F(a). Alors h est dérivable sur I comme combinaison linéaire de fonctions qui le sont, et pour $x \in I$, h'(x) = F'(x) = f(x). De plus h(a) = 0, donc h est une primitive de f s'annulant en a. D'après l'unicité du point précédent, on a pour tout $x \in I$, $h(x) = \int_{-x}^{x} f(t)dt$. D'où le résultat.

Notations.

 Le symbole \(\int f(x) \) dx (introduit par Leibniz) désigne une primitive quelconque de \(f \). Elle est donc définie à une constante additive près.

La fonction x → ∫_a^x f(t)dt est la primitive de f s'annulant en a.

5.2 Étude de $x \mapsto \int_{-\infty}^{v(x)} f(t)dt$

Soient I,J deux intervalles de $\mathbb{R},\ u,v:I\to\mathbb{R}$ de classe \mathcal{C}^1 telles que $u(I),v(I)\subset J$ et $f:J\to\mathbb{K}$ continue. Alors la fonction $g:x\mapsto\int_{u(x)}^{v(x)}f(t)dt$ est définie sur I, de classe \mathcal{C}^1 sur I, et :

$$\forall x \in I, g'(x) = f(v(x))v'(x) - f(u(x))u'(x).$$

Preuve. Pour tout $x \in I$, on a $u(x), v(x) \in J$ et J est un intervalle. Donc $[u(x), v(x)] \subset J$ et g(x)existe pour tout $x \in I$.

La fonction $f : J \to K$ étant continue sur J, elle admet une primitive F de classe C^1 sur J. On a alors pour tout $x \in I$,

$$g(x) = F(v(x)) - F(u(x)).$$

La fonction g est donc de classe C^1 en tant que différence et composées de fonctions de classe C^1 , et pour tout $x \in I$, on a :

$$g'(x) = v'(x)f(v(x)) - u'(x)f(u(x)).$$

5.3 Intégration par parties

- Propriété 15 (Intégration par parties) —

Soient f et g sont deux fonctions de classe C^1 sur [a, b] à valeur dans K.

$$\int_a^b f'(t)g(t)dt = \left[f(t)g(t) \right]_a^b - \int_a^b f(t)g'(t)dt.$$

Preuve. On a

$$\int_a^b f'(t)g(t)dt + \int_a^b f(t)g'(t)dt = \int_a^b (f'(t)g(t) + f(t)g'(t))dt = \int_a^b (fg)'(t)dt = \left[f(t)g(t)\right]_a^b \int_a^b f'(t)g(t)dt + \int_a^b f(t)g'(t)dt = \int_a^b (f'(t)g(t) + f(t)g'(t))dt$$

puisque fg est C^1 comme produit de fonctions qui le sont.

Preuve. On a

$$\int_{a}^{b} f'(t)g(t)dt + \int_{a}^{b} f(t)g'(t)dt = \int_{a}^{b} (f'(t)g(t) + f(t)g'(t))dt = \int_{a}^{b} (fg)'(t)dt = \left[f(t)g(t)\right]_{a}^{b}$$

puisque fg est C^1 comme produit de fonctions qui le sont.

5.4 Changement de variables

Propriété 16 (Changement de variable) ——

Soient I un intervalle de \mathbb{R} et $f: I \to \mathbb{K}$ une fonction continue sur I. Soient $\varphi: [a, b] \to I$ une fonction de classe C^1 sur [a, b]. Alors

$$\int_{\varphi(a)}^{\varphi(b)} f(x) d\mathbf{x} = \int_{a}^{b} f(\varphi(t)) \varphi'(t) d\mathbf{t}.$$

On dit qu'on a effectué le changement de variables $x = \varphi(t)$.

Preuve. Si F est une primitive de f, alors $F \circ \varphi$ est une primitive de $f \circ \varphi \times \varphi'$ et on a :

$$\int_{\varphi(a)}^{\varphi(b)} f(x) \mathrm{d} \mathbf{x} = [F(x)]_{\varphi(a)}^{\varphi(b)} = F(\varphi(b)) - F(\varphi(a)).$$

$$\int_{a}^{b} f \circ \varphi(t)\varphi'(t)dt = [F \circ \varphi(t)]_{a}^{b} = F(\varphi(b)) - F(\varphi(a)).$$

▶ Dans la pratique, on veillera en effectuant un changement de variables à modifier les trois éléments :

- la variable x = φ(t),
- l'élément différentiel dx = φ'(t)dt,
- les bornes de l'intégrale : si t varie entre a et b, x = φ(t) doit varier entre φ(a) et φ(b).

Propriété 17 —

Soit $f : \mathbb{R} \to \mathbb{K}$ une fonction continue.

si f est périodique de période T, alors pour tous a, b ∈ R:

$$\int_{a}^{b} f(t) dt = \int_{a+T}^{b+T} f(t) dt , \int_{a}^{a+T} f(t) dt = \int_{b}^{b+T} f(t) dt$$

- (2) si f est une fonction paire, alors pour tout $a \in \mathbb{R}$: $\int_{-a}^{a} f(t) dt = 2 \int_{0}^{a} f(t) dt$.
- (3) si f est une fonction impaire, alors pour tout a ∈ R: ∫_{-a}^a f(t) dt = 0.

IV - Recherche de primitives :

Rappelons au cas où que nous savons primitiver aisément un certain nombre de fonctions classiques :

- les fonctions de la forme $x \mapsto e^{ax} \cos(bx)$ ou $x \mapsto e^{ax} \sin(bx)$ avec $a, b \in \mathbb{R}^*$ grâce à l'exponentielle complexe,
- les fonctions de la forme $x \mapsto \sin^m x \cos^n x$ avec $m, n \in \mathbb{N}$ par linéarisation,
- les fonctions rationnelles par décomposition en éléments simples.

Les tableaux ci-dessous donnent enfin la liste des quelques primitives qu'il faut connaître à tout prix.

Fonction	Primitive
e ^x	e ^x
$\ln x$	$x \ln x - x$
$\frac{1}{x}$	$\ln x $
$x^{\alpha} (\alpha \neq -1)$	$\frac{x^{\alpha+1}}{\alpha+1}$

Fonction	Primitive
sin x	$-\cos x$
cos x	sin x
tan x	$-\ln \cos x $

5.2. Intégration des éléments simples

Soit $\frac{P(x)}{Q(x)}$ une fraction rationnelle, où P(x), Q(x) sont des polynômes à coefficients réels. Alors la fraction $\frac{P(x)}{Q(x)}$ s'écrit comme somme d'un polynôme $E(x) \in \mathbb{R}[x]$ (la partie entière) et d'éléments simples d'une des formes suivantes :

$$\frac{\gamma}{(x-x_0)^k} \quad \text{ou} \quad \frac{\alpha x+\beta}{(ax^2+bx+c)^k} \text{ avec } b^2-4ac<0$$

où $\alpha, \beta, \gamma, a, b, c \in \mathbb{R}$ et $k \in \mathbb{N} \setminus \{0\}$

- 1. On sait intégrer le polynôme E(x).
- 2. Intégration de l'élément simple $\frac{\gamma}{(x-x_0)^k}$.
 - (a) Si k=1 alors $\int \frac{\gamma dx}{x-x_0} = \gamma \ln|x-x_0| + c_0$ (sur] $-\infty$, x_0 [ou] x_0 , $+\infty$ [).
 - (b) Si $k \ge 2$ alors $\int \frac{\gamma \, dx}{(x-x_0)^k} = \gamma \int (x-x_0)^{-k} \, dx = \frac{\gamma}{-k+1} (x-x_0)^{-k+1} + c_0 \text{ (sur]} -\infty, x_0[\text{ ou]} x_0, +\infty[\text{)}.$
- 3. Intégration de l'élément simple $\frac{ax+\beta}{(ax^2+bx+c)^k}$. On écrit cette fraction sous la forme

$$\frac{\alpha x+\beta}{(ax^2+bx+c)^k}=\gamma\frac{2ax+b}{(ax^2+bx+c)^k}+\delta\frac{1}{(ax^2+bx+c)^k}$$

- (a) Si k = 1, calcul de $\int \frac{2ax+b}{ax^2+bx+c} dx = \int \frac{u'(x)}{u(x)} dx = \ln|u(x)| + c_0 = \ln|ax^2+bx+c| + c_0$.
- (b) Si $k \ge 2$, calcul de $\int \frac{2ax+b}{(ax^2+bx+c)^k} dx = \int \frac{u'(x)}{u(x)^k} dx = \frac{1}{-k+1} u(x)^{-k+1} + c_0 = \frac{1}{-k+1} (ax^2+bx+c)^{-k+1} + c_0$.
- (c) Si k=1, calcul de $\int \frac{1}{ax^2+bx+c} dx$. Par un changement de variable u=px+q on se ramène à calculer une primitive du type $\int \frac{du}{u^2+1} = \arctan u + c_0$.
- (d) Si $k \geqslant 2$, calcul de $\int \frac{1}{(ax^2+bx+c)^k} dx$. On effectue le changement de variable u = px + q pour se ramener au calcul de $I_k = \int \frac{du}{(u^2+1)^k}$. Une intégration par parties permet de passer de I_k à I_{k-1} .

Par exemple calculons I_2 . Partant de $I_1=\int \frac{du}{u^2+1}$ on pose $f=\frac{1}{u^2+1}$ et g'=1. La formule d'intégration par parties $\int f \, g' = [f \, g] - \int f' g$ donne (avec $f' = -\frac{2u}{(u^2+1)^2}$ et g=u)

$$I_{1} = \int \frac{du}{u^{2}+1} = \left[\frac{u}{u^{2}+1}\right] + \int \frac{2u^{2} du}{(u^{2}+1)^{2}} = \left[\frac{u}{u^{2}+1}\right] + 2\int \frac{u^{2}+1-1}{(u^{2}+1)^{2}} du$$
$$= \left[\frac{u}{u^{2}+1}\right] + 2\int \frac{du}{u^{2}+1} - 2\int \frac{du}{(u^{2}+1)^{2}} = \left[\frac{u}{u^{2}+1}\right] + 2I_{1} - 2I_{2}$$

On en déduit $I_2=\frac{1}{2}I_1+\frac{1}{2}\frac{u}{u^2+1}+c_0.$ Mais comme $I_1=\arctan u$ alors

$$I_2 = \int \frac{du}{(u^2 + 1)^2} = \frac{1}{2} \arctan u + \frac{1}{2} \frac{u}{u^2 + 1} + c_0.$$

5.3. Intégration des fonctions trigonométriques

On peut aussi calculer les primitives de la forme $\int P(\cos x, \sin x) dx$ ou de la forme $\int \frac{P(\cos x, \sin x)}{Q(\cos x, \sin x)} dx$ quand P et Q sont des polynômes, en se ramenant à intégrer une fraction rationnelle.

Il existe deux méthodes:

- · les règles de Bioche sont assez efficaces mais ne fonctionnent pas toujours ;
- le changement de variable $t = \tan \frac{x}{2}$ fonctionne tout le temps mais conduit à davantage de calculs.

Les règles de Bioche. On note $\omega(x) = f(x) dx$. On a alors $\omega(-x) = f(-x) d(-x) = -f(-x) dx$ et $\omega(\pi - x) = -f(-x) dx$ $f(\pi - x) d(\pi - x) = -f(\pi - x) dx.$

- Si $\omega(-x) = \omega(x)$ alors on effectue le changement de variable $u = \cos x$.
- Si $\omega(\pi x) = \omega(x)$ alors on effectue le changement de variable $u = \sin x$.
- Si $\omega(\pi + x) = \omega(x)$ alors on effectue le changement de variable $u = \tan x$.

Exemple 15.

Calcul de la primitive $\int \frac{\cos x \, dx}{2-\cos^2 x}$ On note $\omega(x) = \frac{\cos x \, dx}{2-\cos^2 x}$. Comme $\omega(\pi-x) = \frac{\cos(\pi-x) \, d(\pi-x)}{2-\cos^2(\pi-x)} = \frac{(-\cos x) \, (-dx)}{2-\cos^2 x} = \omega(x)$ alors le changement de variable qui convient est $u = \sin x$ pour lequel $du = \cos x \, dx$. Ainsi :

$$\int \frac{\cos x \, dx}{2 - \cos^2 x} = \int \frac{\cos x \, dx}{2 - (1 - \sin^2 x)} = \int \frac{du}{1 + u^2} = \left[\arctan u\right] = \arctan(\sin x) + c.$$

Le changement de variable $t = \tan \frac{x}{2}$.

Les formules de la « tangente de l'arc moitié » permettent d'exprimer sinus, cosinus et tangente en fonction de tan $\frac{x}{2}$.

Avec
$$t = \tan \frac{x}{2}$$
 on a
$$\cos x = \frac{1 - t^2}{1 + t^2} \qquad \sin x = \frac{2t}{1 + t^2} \qquad \tan x = \frac{2t}{1 - t^2}$$
 et
$$dx = \frac{2 dt}{1 + t^2}.$$

Exemple 16.

Calcul de l'intégrale $\int_{-\pi/2}^{0} \frac{dx}{1-\sin x}$. Le changement de variable $t = \tan \frac{x}{2}$ définit une bijection de $\left[-\frac{\pi}{2}, 0\right]$ vers $\left[-1, 0\right]$ (pour $x = -\frac{\pi}{2}$, t = -1 et pour x = 0, t = 0). De plus on a $\sin x = \frac{2t}{1+t^2}$ et $dx = \frac{2\,dt}{1+t^2}$.

$$\int_{-\frac{\pi}{2}}^{0} \frac{dx}{1 - \sin x} = \int_{-1}^{0} \frac{\frac{2 dt}{1 + t^{2}}}{1 - \frac{2t}{1 + t^{2}}} = 2 \int_{-1}^{0} \frac{dt}{1 + t^{2} - 2t}$$
$$= 2 \int_{-1}^{0} \frac{dt}{(1 - t)^{2}} = 2 \left[\frac{1}{1 - t} \right]_{-1}^{0} = 2 \left(1 - \frac{1}{2} \right) = 1$$

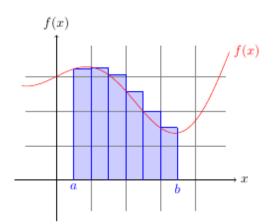
V – Approximation d'intégrales, sommes de Riemann :

Définition.

Soit $f : [a, b] \to \mathbb{R}$ une fonction continue et $n \in \mathbb{N}^*$. On appelle somme de Riemann d'ordre nassociée à f la somme :

$$R_n = \frac{b-a}{n} \sum_{k=0}^{n-1} f\left(\underbrace{a+k\frac{b-a}{n}}_{=a_k}\right).$$

Remarque. Cette somme de Riemann est l'intégrale de la fonction en escalier φ qui vaut $f(a_k)$ sur $|a_k, a_{k+1}|$ pour tout $0 \le k \le n-1$. Cela correspond à l'aire en bleu dans le dessin ci-dessous.



Preuve. On fait la preuve dans le cas où f est lipschitzienne (ce qui est en particulier le cas si f est de classe C^1 sur [a, b]). Notons K la constante de lipschitz associée à f sur [a, b].

$$\left| \int_{a}^{b} f(x)dx - R_{n} \right| = \left| \sum_{k=0}^{n-1} \int_{a_{k}}^{a_{k+1}} f(x)dx - \frac{b-a}{n} \sum_{k=0}^{n-1} f(a_{k}) \right|$$

$$= \left| \sum_{k=0}^{n-1} \int_{a_{k}}^{a_{k+1}} f(x) - f(a_{k}) dx \right|$$

$$\leq \sum_{k=0}^{n-1} \left| \int_{a_{k}}^{a_{k+1}} f(x) - f(a_{k}) dx \right| \text{ par inégalité triangulaire}$$

$$\leq \sum_{k=0}^{n-1} \int_{a_{k}}^{a_{k+1}} |f(x) - f(a_{k})| dx$$

$$\leq \sum_{k=0}^{n-1} \int_{a_{k}}^{a_{k+1}} |f(x) - f(a_{k})| dx$$

$$\leq \sum_{k=0}^{n-1} \int_{a_{k}}^{a_{k+1}} K|x - a_{k}| dx \text{ car } f \text{ est lipschitzienne}$$

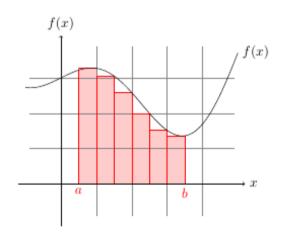
$$\leq \sum_{k=0}^{n-1} \int_{a_{k}}^{a_{k+1}} K(a_{k+1} - a_{k}) dx \text{ car } f \text{ est lipschitzienne}$$

$$\leq K \sum_{k=0}^{n-1} (a_{k+1} - a_{k})^{2} = K \sum_{k=0}^{n-1} \frac{(b-a)^{2}}{n^{2}} = K \frac{(b-a)^{2}}{n}$$

Comme enfin $\lim_{x \to a} K \frac{(b-a)^2}{n} = 0$, on obtient par théorème d'encadrement $\lim_{x \to a} R_n = \int_a^b f(x) dx$.

Remarque:

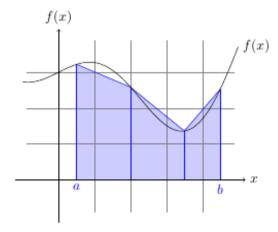
- On reconnait la méthode des rectangles. En particulier, ce résultat signifie qu'une somme de Riemann constitue une bonne approximation de l'intégrale pourvu que le pas soit petit.
- On a le même résultat avec $R'_n = \frac{b-a}{n} \sum_{k=1}^n f\left(a + k \frac{b-a}{n}\right)$.



Méthode des rectangles "à droite".

Remarque. Méthode des trapèzes. La vitesse de convergence de la somme de Riemann vers l'intégrale est en $\frac{1}{n}$. On peut améliorer la précision en utilisant la méthode des trapèzes. On approche alors $\int_{[a,b]} f$ par

$$T_n(f) = \frac{b - a}{n} \sum_{k=0}^{n-1} \frac{f(a_k) + f(a_{k+1})}{2}$$



On obtient alors une approximation en $\frac{1}{n^2}$: Si f est de classe \mathcal{C}^2 sur [a,b], on peut montrer que

$$\left| \int_{a}^{b} f(x)dx - T_{n}(f) \right| \le M_{2} \frac{(b-a)^{3}}{12n^{2}}$$

où
$$M_2 = \sup_{x \in [a,b]} |f''(x)|$$
.