Chapitre 5: Analyse asymptotique

I- Relations de comparaison de suites :

I-1) Domination, négligeabilité :

Définition.

Soit (u_n) et (v_n) deux suites. On dit que :

- (u_n) est dominée par (v_n) si la suite $\left(\frac{u_n}{v_n}\right)$ est bornée. On note alors $u_n = O(v_n)$.
- la suite (u_n) est négligeable devant (v_n) (ou que (v_n) est prépondérante devant la suite (u_n)) si la suite $\left(\frac{u_n}{v_n}\right)$ converge vers 0. On note alors $u_n=o(v_n)$.

Exemples.

- lacktriangle On a : $\frac{\cos(n)+4}{n^2}=O\left(\frac{1}{n^2}\right)$ car $(\cos(n)+4)$ est bornée.

Remarques.

- (u_n) est bornée si et seulement si $u_n = O(1)$.
- (u_n) converge vers 0 si et seulement si $u_n = o(1)$.
- $u_n = o(v_n) \implies u_n = O(v_n)$.

Propriété 1

Soient (u_n) , (v_n) et (w_n) trois suites.

- (1) Si $u_n = O(v_n)$ et $v_n = O(w_n)$, alors $u_n = O(w_n)$ (transitivité de la relation O).
- (2) Si $u_n = o(v_n)$ et $v_n = o(w_n)$, alors $u_n = o(w_n)$ (transitivité de la relation o).

Preuve. On démontre le premier point, le deuxième point est analogue. Soit (u_n) une suite telle que $u_n = o(w_n)$ et $w_n = o(t_n)$. Alors, pour tout $n \ge n_0$, on a : $\frac{u_n}{t_n} = \frac{u_n}{w_n} \cdot \frac{w_n}{t_n} \xrightarrow[n \to +\infty]{} 0 \cdot 0 = 0$. Ainsi, $u_n = o(t_n)$.

- Propriété 2

Soient (u_n) , (v_n) , (w_n) et (t_n) quatre suites telles que (w_n) et (t_n) ne s'annulent pas à partir d'un certain rang. Soit $(\lambda, \mu) \in \mathbb{K}^2$.

- (1) Si $u_n=O(w_n)$ et $v_n=O(w_n)$, alors $\lambda u_n+\mu v_n=O(w_n)$. Si $u_n=o(w_n)$ et $v_n=o(w_n)$, alors $\lambda u_n+\mu v_n=o(w_n)$.
- (2) Si $u_n = O(w_n)$ et $v_n = O(t_n)$, alors $u_n v_n = O(w_n t_n)$. Si $u_n = O(w_n)$ et $v_n = o(t_n)$, alors $u_n v_n = o(w_n t_n)$.

Exemples:

$$n^2 \underset{n \to +\infty}{=} o(n^4).$$
 $2^n \underset{n \to +\infty}{=} o(3^n).$ $\frac{1}{n^2} \underset{n \to +\infty}{=} o(\frac{1}{n}).$

- Propriété 3 (croissances comparées) -

Soit $(\alpha, \beta) \in \mathbb{R}$ avec $\alpha, \beta > 0$, et q > 1. Alors :

$$q^{-n} = o\left(\frac{1}{n^{\alpha}}\right), \quad \frac{1}{n^{\alpha}} = o\left(\ln^{\beta}n\right), \quad \ln^{\beta}n = o\left(n^{\alpha}\right), \quad n^{\alpha} = o\left(q^{n}\right), \quad q^{n} = o(n!) \quad ; \quad n! = o(n^{n})$$

Remarque. En notant $u_n \ll v_n$ au lieu de $u_n = o(v_n)$, on a donc lorsque n tend vers $+\infty$:

$$\frac{1}{n!} \ll q^{-n} \ll \frac{1}{n^{\alpha}} \ll \ln^{\beta} n \ll n^{\alpha} \ll q^n \ll n! \ll n^n.$$

<u>I-2) Equivalence :</u>

Définition.

Soit (u_n) et (v_n) deux suites. On dit que $(u_n)_{n\in\mathbb{N}}$ est équivalente à $(v_n)_{n\in\mathbb{N}}$, et on note $u_n \sim v_n$ si la suite $\left(\frac{u_n}{v_n}\right)$ converge vers 1. On note alors $u_n \sim v_n$.

Exemple. On a $\sqrt{n} \sim \sqrt{n+1}$. En effet, $\frac{\sqrt{n+1}}{\sqrt{n}} = \sqrt{1+\frac{1}{n}}$. Or, $\lim_{n \to +\infty} \left(1+\frac{1}{n}\right) = 1$ et par composition par la fonction racine, continue en 1, on a bien $\lim_{n\to+\infty} \frac{\sqrt{n+1}}{\sqrt{n}} = \sqrt{1} = 1$.

- Propriété 4 –

La relation \sim est une relation, d'équivalence sur l'ensemble des suites ne s'annulant pas, c'est à dire

- (1) \sim est réflexive : $u_n \sim u_n$;
- (2) \sim est symétrique : $u_n \sim v_n \rightarrow v_n \sim u_n$;
- (3) \sim est transitive : si $u_n \sim v_n$ et $v_n \sim w_n$, alors $u_n \sim w_n$.

- Solent (u_n) , (v_n) . (1) $u_n \sim v_n \iff u_n v_n = o(v_n)$. (2) $u_n \sim v_n \implies u_n = O(v_n)$ et $v_n = O(u_n)$.

$$(1) \ u_n \sim v_n \Leftrightarrow \lim_{n \to +\infty} \frac{u_n}{v_n} = 1 \Leftrightarrow \lim_{n \to +\infty} \left(\frac{u_n}{v_n} - 1 \right) = 0 \Leftrightarrow \lim_{n \to +\infty} \left(\frac{u_n - v_n}{v_n} \right) = 0 \Leftrightarrow u_n - v_n = o(v_n).$$

(2) Si
$$u_n \sim v_n$$
 alors $\left(\frac{u_n}{v_n}\right)_{n \geq n_0}$ converge vers 1 donc bornée. De plus, comme $\left(\frac{u_n}{v_n}\right)_{n \geq n_0}$ converge vers 1 alors $\frac{u_n}{v_n}$ donc u_n est non nulle à partir d'un certain rang et $\left(\frac{v_n}{u_n}\right)_{n \geq n_0}$ converge vers 1 donc $\left(\frac{v_n}{u_n}\right)_{n \geq n_0}$ est bornée.

Soient (u_n) , (v_n) , (w_n) et (t_n) quatre suites telles que $u_n \sim w_n$ et $v_n \sim t_n$. Alors on a :

- (1) $u_n v_n \sim w_n t_n$; (2) $\frac{u_n}{v_n} \sim \frac{w_n}{t_n}$;
- (3) $\forall p \in \mathbb{N}$, $u_n^p \sim w_n^p$

Preuve. On a, pour $n \in \mathbb{N}$, $\frac{u_n w_n}{v_n z_n} = \frac{u_n}{v_n} \times \frac{w_n}{z_n} \underset{n \to +\infty}{\longrightarrow} 1$ par produit de limites, d'où le premier point.

Pour $n \in \mathbb{N}$, on a

$$\frac{\frac{u_n}{w_n}}{\frac{v_n}{z}} = \frac{u_n z_n}{v_n w_n} = \frac{u_n}{v_n} \times \left(\frac{w_n}{z_n}\right)^{-1} \underset{n \to +\infty}{\longrightarrow} 1$$

comme quotient de limites. Ainsi on a le second point. Enfin, pour n et $p \in \mathbb{N}$, on a $\frac{u_n^p}{v_n^p} = \left(\frac{u_n}{v_n}\right)^p \underset{n \to +\infty}{\longrightarrow} 1^p = 1$ par opérations sur les limites. D'où le troisième point.

Exemple. Montrons que $\binom{n}{6} \sim \frac{n^6}{720}$.

En effet, pour tout $j \in \mathbb{N}$ fixé, on a $n - j \sim n$; par conséquent :

$$\binom{n}{6} = \frac{1}{6!} \prod_{j=0}^{5} (n-j) \sim \frac{1}{6!} \prod_{j=0}^{5} n = \frac{n^6}{720}$$

ATTENTION !!!!

• On ne peut ni ajouter, ni soustraire, les équivalents, comme le montre l'exemple suivant :

$$n+1 \sim n+2$$
 et $-n \sim -n$ mais on n'a pas $1 \sim 2$.

• On ne compose pas les équivalents : si f est une fonction (même continue sur \mathbb{R}) et si $u_n \sim v_n$, on n'a pas forcément $f(u_n) \sim f(v_n)$ comme le montre l'exemple suivant :

si
$$u_n = n^2 + n$$
, $v_n = n^2$ et $f = \exp$, on a $u_n \sim v_n$, mais :

$$\frac{f(u_n)}{f(v_n)} = e^{n^2 + n - n^2} = e^{n^2} \underset{n \to +\infty}{\longrightarrow} +\infty, \text{ donc } f(u_n) \not\sim f(v_n).$$

• Lors d'une mise en puissance d'un équivalent, l'exposant doit être constant : on a $1+\frac{1}{n}\sim 1$ mais $\left(1+\frac{1}{n}\right)^n \not\sim 1$ (puisque grâce à la limite classique $\left(1+\frac{1}{n}\right)^n \to e$, on a $\left(1+\frac{1}{n}\right)^n \sim e$).

Soit
$$(u_n)$$
 une suite et $l \in \mathbb{R}^*$.
$$\lim_{n \to +\infty} u_n = l \quad \Longleftrightarrow \quad u_n \sim l$$

Preuve. En effet, si $\lim_{n \to +\infty} u_n = l \neq 0$ alors (u_n) ne s'annule pas à partir d'un certain rang et on a :

$$\frac{u_n}{l} \xrightarrow[n \to +\infty]{} \frac{l}{l} = 1. \text{ Donc } u_n \sim l.$$

Réciproquement si $u_n \sim l$, alors puisque $l \neq 0$, $\frac{u_n}{l} \xrightarrow[n \to +\infty]{} 1$ donc $u_n = \frac{u_n}{l} \cdot l \xrightarrow[n \to +\infty]{} l$.

Propriété 8

Soient (u_n) et (v_n) deux suites telles que $u_n \sim v_n$.

- (1) u_n et v_n ont même signe strict (> 0 ou < 0) à partir d'un certain rang.
- (2) $(u_n)_{n\in\mathbb{N}}$ admet une limite (finie ou infinie) si et seulement si $(v_n)_{n\in\mathbb{N}}$ admet une limite et alors $\lim_{n\to+\infty}u_n=\lim_{n\to+\infty}v_n$.

Preuve.

- (1) Comme (u_n) et (v_n) sont équivalentes, on a $\frac{u_n}{v_n} \underset{n \to +\infty}{\longrightarrow} 1$. Donc pour $\epsilon = \frac{1}{2} > 0$, il existe $N \in \mathbb{N}$ tel que $\forall n \geq N, \left| \frac{u_n}{v_n} 1 \right| \leq \frac{1}{2}$. En particulier pour tout $n \geq N$, on a $\frac{u_n}{v_n} \geq \frac{1}{2}$, et u_n et v_n ont même signe strict.
- (2) Supposons que $(v_n)_{n\in\mathbb{N}}$ admet une limite $l\in\overline{\mathbb{R}}$. On a $u_n=\frac{u_n}{v_n}\times v_n$, donc $u_n\underset{n\to+\infty}{\longrightarrow} l$ par opérations sur les limites.

De même si $(u_n)_{n\in\mathbb{N}}$ admet une limite l, on a $v_n = \frac{v_n}{u_n} \times u_n, v_n \xrightarrow[n \to +\infty]{} l$ par opérations sur les limites.

II- Relations de comparaison de fonctions :

Dans toute cette section:

- I désignera un intervalle réel non vide et non réduit à un point, a un point de I ou une extrémité de I (éventuellement $\pm \infty$), \mathcal{D} désignera I ou $I \setminus \{a\}$;
- toutes les fonctions considérées seront définies sur \mathcal{D} à valeurs dans $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} , et supposées non nulles sur $I \setminus \{a\}$ (de sorte que le quotient de deux fonctions est toujours bien défini sur $I \setminus \{a\}$);
- si les fonctions sont définies en a, on supposera de plus qu'elles sont continues en a.

II-1) Domination, négligeabilité:

Définition.

Soient f et $g: \mathcal{D} \to \mathbb{K}$. On dit que :

- f est **dominée** par g au voisinage de a si $\frac{f}{g}$ est bornée au voisinage de a. On note alors f(x) = O(g(x)) ou f = O(g).
- f est **négligeable** devant g au voisinage de a si $\lim_{x\to a} \frac{f(x)}{g(x)} = 0$. On note alors f(x) = o(g(x)) ou f = o(g).

Exemples.

Remarque. Pour $f: \mathcal{D} \to \mathbb{R}$, on a :

- f est bornée au voisinage de a si et seulement si f = O(1).
- f converge vers 0 au voisinage de a si et seulement si f = o(1).
- $\bullet \ f(x) \underset{a}{=} o(g(x)) \implies f(x) \underset{a}{=} O(g(x)).$

Propriété 9

Soit $(\alpha, \beta) \in (\mathbb{R}^+_*)^2$.

$$(\ln x)^{\beta} = o(x^{\alpha}), \quad x^{\beta} = o(e^{\alpha x}), \quad |\ln x|^{\beta} = o\left(\frac{1}{x^{\alpha}}\right), \quad e^{\alpha x} = o\left(\frac{1}{x^{\beta}}\right)$$

II-2) Equivalence:

Définition.

Soient f et $g: \mathcal{D} \to \mathbb{K}$. On dit que f est **équivalente** à g au voisinage de a si $\lim_{x \to a} \frac{f(x)}{g(x)} = 1$. On note alors $f(x) \underset{a}{\sim} g(x)$ ou $f \underset{a}{\sim} g$.

Exemple. $\sin(x) \underset{0}{\sim} x$: en effet pour $I = \mathbb{R}, x \mapsto x$ ne s'annule pas sur $I \setminus \{0\}$ et $\lim_{x \to 0} \frac{\sin x}{x} = 1$.

Remarque.

- Si f est continue en a, on a : $f(x) \sim f(a)$ si $f(a) \neq 0$.
- Si f est dérivable en a, on a : $f(x) f(a) \sim f'(a)(x-a)$ si $f'(a) \neq 0$.
- Si $P(x) = a_p x^p + a_{p-1} x^{p-1} + \dots a_q x^q$ $(p \ge q \text{ est une fonction polynomiale, alors :}$

$$P(x) \underset{+\infty}{\sim} a_p x^p$$
 et $P(x) \underset{0}{\sim} a_q x^q$.

- Propriété 10 🗕

Soient f et g définies sur \mathcal{D} .

- $f(x) \sim_a g(x) \iff f(x) g(x) = o(g(x)).$
- $f(x) \underset{a}{\sim} g(x) \implies f(x) \underset{a}{=} O(g(x))$ et $g(x) \underset{a}{=} O(f(x))$.

- Propriété 11 ----

La relation $\underset{a}{\sim}$ est une relation d'équivalence, c'est à dire :

- (1) $\underset{a}{\sim}$ est réflexive : $f \underset{a}{\sim} f$;
- (2) \sim est symétrique : $f \sim g \Rightarrow g \sim f$;
- (3) $\underset{a}{\sim}$ est transitive : $f\underset{a}{\sim} g$ et $g\underset{a}{\sim} h$ impliquent $f\underset{a}{\sim} h$.

- Propriété 12 (Opérations sur les équivalents) -

Soient f, g, h, u quatre fonctions définies sur \mathcal{D} . Si $f(x) \underset{x \to a}{\sim} g(x)$ et si $h(x) \underset{x \to a}{\sim} u(x)$, alors :

- (1) $f(x)h(x) \underset{x\to a}{\sim} g(x)u(x)$;
- (2) $\frac{f(x)}{h(x)} \underset{x \to a}{\sim} \frac{g(x)}{u(x)}$;
- (3) $\forall p \in \mathbb{N} , f(x)^p \underset{x \to a}{\sim} g(x)^p ;$
- (4) Pour $\alpha \in \mathbb{R}_+^*$, et si f^{α} et g^{α} sont bien définies sur \mathcal{D} , alors $f(x)^{\alpha} \sim g(x)^{\alpha}$.

Preuve.

- (1) On a, pour $x \in \mathcal{D}$, $\frac{f(x)h(x)}{g(x)u(x)} = \frac{f(x)}{g(x)} \times \frac{h(x)}{u(x)} \xrightarrow[x \to a]{} 1$ par produit de limites.
- (2) Pour $x \in \mathcal{D}$, on a

$$\frac{\frac{f(x)}{h(x)}}{\frac{g(x)}{u(x)}} = \frac{f(x)u(x)}{g(x)h(x)} = \frac{f(x)}{g(x)} \times \left(\frac{h(x)}{u(x)}\right)^{-1} \underset{x \to a}{\longrightarrow} 1$$

comme quotient de limites.

- (3) Pour $x \in \mathcal{D}$ et $p \in \mathbb{N}$, on a $\frac{f(x)^p}{g(x)^p} = \left(\frac{f(x)}{g(x)}\right)^p \xrightarrow[x \to a]{} 1^p = 1$ par opérations sur les limites.
- $(4) \text{ Pour tout } x \in \mathcal{D}, \ \frac{f^{\alpha}(x)}{g^{\alpha}(x)} = \left(\frac{f(x)}{g(x)}\right)^{\alpha} = e^{\alpha \ln\left(\frac{f(x)}{g(x)}\right)}. \text{ Comme } \frac{f(x)}{g(x)} \underset{x \to a}{\longrightarrow} 1 \text{ donc } e^{\alpha \ln\left(\frac{f(x)}{g(x)}\right)} \underset{x \to a}{\longrightarrow} 1.$

Propriété 13 (Équivalents classiques au voisinage de 0) —

$$e^{x} - 1 \underset{0}{\sim} x$$

$$\sin x \underset{0}{\sim} x$$

$$\arcsin x \underset{0}{\sim} x$$

$$\sinh x \underset{0}{\sim} x$$

$$\sinh x \underset{0}{\sim} x$$

$$\sinh x \underset{0}{\sim} x$$

$$(1+x)^{\alpha} - 1 \underset{0}{\sim} \alpha x$$

$$\arctan x \underset{0}{\sim} x$$

$$thx \underset{0}{\sim} x$$

$$(1+x)^{\alpha} - 1 \underset{0}{\sim} \alpha x$$

$$\arctan x \underset{0}{\sim} x$$

$$1 - ch(x) \underset{0}{\sim} -\frac{x^{2}}{2}$$

Preuve. On utilise que si f est dérivable en a, $f(x) - f(a) \sim f'(a)(x-a)$ si $f'(a) \neq 0$. Les résultats s'en suivent, sauf les suivants (qu'on obtient par opérations sur les équivalents):

$$1 - \cos x = \frac{1 - \cos^2(x)}{1 + \cos(x)} = \frac{\sin^2(x)}{1 + \cos(x)} \approx \frac{x^2}{2}$$

 $\mathrm{car}\,\sin(x) \underset{0}{\sim} x$ et $1+\cos(x) \underset{0}{\sim} 2.$ De même, on a :

$$1 - ch(x) = \frac{1 - ch^{2}(x)}{1 + ch(x)} = -\frac{sh^{2}(x)}{1 + ch(x)} \sim -\frac{x^{2}}{2}.$$

- **Propriété 14** (Composition à droite dans un équivalent)

Soient f et g deux fonctions définies sur \mathcal{D} . On suppose que g ne s'annule pas au voisinage de a et que $f(x) \sim g(x)$. Soit ϕ une fonction à valeurs dans \mathcal{D} telle que $\lim_{t\to b} \phi(t) = a$ avec $b\in \mathbb{R}\cup\{\pm\infty\}$. On a :

$$f \circ \phi(t) \sim g \circ \phi(t)$$
.

Preuve. En utilisant le théorème de composition pour les limites, on peut écrire :

$$\lim_{t \to b} \frac{f}{g}(\phi(t)) = \lim_{x \to a} \frac{f}{g}(x) = 1$$

D'où le résultat.

IMPORTANT. On veillera à ne pas additionner, soustraire ou composer à gauche des équivalents sans justification, car les résultats obtenus sont généralement faux. Par exemple :

- $x + 1 \underset{\pm \infty}{\sim} x + 2$ et $-x \underset{\pm \infty}{\sim} -x$ mais $1 \underset{\pm \infty}{\sim} 2$;
- $x+1 \underset{\pm \infty}{\sim} x$, mais on n'a pas $\exp(x+1) \underset{\pm \infty}{\sim} \exp(x)$;
- $1 + 2x \sim 1 + x$ et $\ln(1 + 2x) \sim 2x$, $\ln(1 + x) \sim x$.

Exemple. Puisque $\lim_{t\to 0} \sin t = 0$ et $\ln(1+x) \underset{0}{\sim} x$, on en déduit : $\ln(1+\sin t) \underset{0}{\sim} \sin t \underset{0}{\sim} t$. En revanche, on ne peut pas déduire directement de $\sin(t) \underset{0}{\sim} t$ et $\ln(1+x) \underset{0}{\sim} x$ que $\ln(1+\sin t) \underset{0}{\sim} \ln(1+t)$, car alors on compose à gauche les équivalents par $x \mapsto \ln(1+x)$.

- Propriété 15 –

Soient $f, g : \mathcal{D} \to \mathbb{R}$ deux fonctions telle que $f(x) \sim g(x)$.

- (1) Si g est de signe constant (> 0 ou < 0) au voisinage de a, alors f est de même signe strict que g au voisinage de a.
- (2) Si g admet une limite finie ou infinie en a alors f admet une limite en a et $\lim_{x\to a} f(x) = \lim_{x\to a} g(x)$.

Preuve.

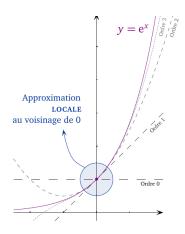
- (1) On a $\frac{f(x)}{g(x)} \xrightarrow[x \to a]{} 1$, donc par définition de la limite, en posant $\epsilon = \frac{1}{2} > 0$, il existe r > 0 tel que $\forall x \in [a-r,a+r] \cap \mathcal{D}$, $\left|\frac{f(x)}{g(x)}-1\right| \leq \frac{1}{2}$ et pour $x \in [a-r,a+r] \cap \mathcal{D}$, $\frac{f(x)}{f(x)} \geq \frac{1}{2}$, donc f(x) et g(x) ont même signe strict.
- (2) Supposons que $g(x) \xrightarrow[x \to a]{} l$. Pour tout $x \in \mathcal{D}$, on a $f(x) = \frac{f(x)}{g(x)} \times g(x)$, donc $g(x) \xrightarrow[x \to a]{} l$ par opérations sur les limites.

П

III- Développements limités :

III-1) Généralités:

Nous cherchons dans ce paragraphe à approximer les fonctions par des fonctions polynomiales au voisinage d'un point, généralement 0. Nous allons par exemple montrer que : $e^x = 1 + x + \frac{x^2}{2} + \frac{x^3}{6} + o(x^3)$. Ce résultat signifie que la fonction polynomiale de degré inférieur ou égal à 3 la plus proche de l'exponentielle au voisinage de 0 est la fonction $x \longmapsto 1 + x + \frac{x^2}{2} + \frac{x^3}{6}$.



Dans toute cette section:

- I désignera un intervalle réel non vide et non réduit à un point, a un réel appartenant à \overline{I} (= $I \cup \{\text{extrémité de } I\}$), \mathcal{D} désignera I ou $I \setminus \{a\}$;
- toutes les fonctions considérées seront définies sur \mathcal{D} à valeurs dans $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} .

Définition.

On dit que $f: \mathcal{D} \to \mathbb{K}$ admet un **développement limité** en a à l'ordre $n \in \mathbb{N}$ (en abrégé $DL_n(a)$) s'il existe $(a_0, \ldots, a_n) \in \mathbb{K}^{n+1}$ tel que

$$f(x) = a_0 + a_1(x-a) + \dots + a_n(x-a)^n + o((x-a)^n).$$

Remarque. On distingue dans ce développement limité :

• sa partie régulière, qui est la fonction polynomiale :

$$P_n(x) = a_0 + a_1(x-a) + \dots + a_n(x-a)^n = \sum_{k=0}^n p_k(x-a)^k.$$

• le reste $o((x-a)^n)$, fonction négligeable devant $(x-a)^n$ lorsque $x \to a$, qui s'écrit aussi $(x-a)^n \varepsilon_n(x-a)$ où $\varepsilon_n : \mathcal{D} \to \mathbb{K}$ est telle que $\lim_{x\to 0} \varepsilon(x) = 0$.

Exemples.

$$f(x) = x - x^2 + 2x^3 + o(x^3).$$

Propriété 16 —

Une fonction f admet, au voisinage de $a \in \mathbb{R}$, un développement limité à l'ordre n si et seulement si la fonction $h \stackrel{g}{\mapsto} f(a+h)$ admet au voisinage de 0 un développement limité à l'ordre n. On a de plus

$$f(x) \underset{x \to a}{=} \sum_{k=0}^{n} a_k (x-a)^k + o((x-a)^n) \iff g(h) = f(a+h) \underset{h \to 0}{=} \sum_{k=0}^{n} a_k h^k + o(h^k)$$

Exemple. Calculons le $DL_3(2)$ de $f(x) = \frac{1}{x}$.

On pose h = x - 2. On a alors :

$$f(x) = f(2+h) = \frac{1}{2+h} = \frac{1}{2} \frac{1}{1+\frac{h}{2}}$$

On utilise alors le DL en 0 de la fonction $x \to \frac{1}{1-x}$ calculé précédemment pour obtenir finalement :

$$f(2+h) = \frac{1}{2} \left(1 - \frac{h}{2} + \frac{h^2}{4} - \frac{h^3}{8} + o(h^3) \right)$$

et donc:

$$f(x) = \frac{1}{2} - \frac{(x-2)}{4} + \frac{(x-2)^2}{8} - \frac{(x-2)^3}{16} + o((x-2)^3).$$

- Propriété 17 (Unicité d'un DL) -

Si f admet un développement limité à l'ordre n en a, celui-ci est unique.

Preuve. Par l'absurde, supposons que $f(x) = \sum_{k=0}^{n} a_k (x-a)^k + o((x-a)^n) = \sum_{k=0}^{n} b_k (x-a)^k + o((x-a)^n)$ avec $(a_0, ..., a_n) \neq (b_0, ..., b_n)$. Soit p le plus petit entier tel que $b_p \neq a_p$. Alors, pour tout $0 \leq k \leq p$, on a $a_k - b_k = 0$. On a $f(x) - \sum_{k=0}^{n} a_k (x-a)^k = o((x-a)^n)$ et $f(x) - \sum_{k=0}^{n} b_k (x-a)^k = o((x-a)^n)$. Ainsi, pour tout $x \neq a$:

$$0 = f(x) - f(x) = \sum_{k=0}^{n} (a_k - b_k)(x - a)^k + o((x - a)^n)$$

En divisant par $(x-a)^p$:

$$0 = (a_p - b_p) + (x - a) \sum_{k=p+1}^{n} (a_k - b_k)(x - a)^{k-a-1} + o((x - a)^{n-p}) \xrightarrow[x \to a]{} a_p - b_p$$

D'où $a_p = b_p$, ce qui constitue une contradiction.

Propriété 18 (Troncature d'un DL)

Supposons que f admette un développement limité à l'ordre n en a,

$$f(x) = \underset{x \to a}{=} a_0 + a_1(x - a) + \dots + a_n(x - a)^n + o((x - a)^n).$$

Alors pour tout $p \in [[0, n]]$, f admet un développement limité à l'ordre p en a obtenue en tronquant le développement limité à l'ordre p:

$$f(x) = a_0 + a_1(x-a) + \dots + a_p(x-a)^p + o((x-a)^p).$$

Preuve. Si f admet un développement limité à l'ordre n en a dont la partie régulière est $x \mapsto \sum_{k=0}^{n} a_k (x-a)^k$, alors, pour tout $p \le n$, on a :

$$f(x) = \sum_{k=0}^{n} a_k (x-a)^k + o((x-a)^n) = \sum_{k=0}^{p} a_k (x-a)^k + \underbrace{\sum_{k=p+1}^{n} a_k (x-a)^k + o((x-a)^n)}_{o((x-a)^p)}$$

Propriété 19 -

Si f est paire (resp. impaire) et admet un développement limité à l'ordre n en 0, ce développement limité ne contient que des termes pairs (resp. impairs).

Preuve. Supposons par exemple f paire, et notons

$$f(x) = a_0 + a_1 x + \dots + a_n x^n + o(x^n)$$

son développement limité en 0. On a alors

$$f(x) = f(-x) = a_0 + a_1(-x) + \dots + a_n(-x)^n + o(x^n)$$

car une fonction négligeable devant $(-x)^n$ l'est aussi devant x^n . Par unicité du DL, $a_k = (-1)^k a_k$ pour tout $k \in [|0, n|]$. On a donc pour tout k impair, $a_k = -a_k$ donc $a_k = 0$.

Propriété 20 -

Supposons que f admette un développement limité à l'ordre n en a de partie régulière non nulle :

$$f(x) = a_0 + a_1(x - a) + \dots + a_n(x - a)^n + o((x - a)^n).$$

Alors en notant p le plus petit entier tel que $a_p \neq 0$, on a : $f(x) \sim a_p (x-a)^p$

Preuve. Comme pour $k \in [0, p-1]$, $a_k = 0$, on a $f(x) = a_p(x-a)^p + \cdots + a_n(x-a)^n + o_a(x-a)^n$, puis

$$\frac{f(x)}{a_p(x-a)^p} = 1 + \frac{a_{p+1}}{a_p}(x-a) + \dots + \frac{a_n}{a_p}(x-a)^{n-p} + o((x-a)^{n-p}) \underset{x \to a}{\longrightarrow} 1.$$

Remarque. f est donc du même signe strict que le premier terme non nul de son DL au voisinage de a.

III-2) Formule de Taylor-Young :

On commence par un lemme simple avant la version plus générale.

Théorème (Lemme de primitivation des développements limités) Soient I un intervalle, $g \in \mathcal{D}(I,\mathbb{R})$, $a \in I$ et $n \in \mathbb{N}$. Si : $g'(x) \underset{x \to a}{=} o((x-a)^n)$, alors : $g(x) \underset{x \to a}{=} g(a) + o((x-a)^{n+1})$.

Démonstration Pour tout $x \in I \setminus \{a\}$, g est continue sur [a,x] (ou [x,a]) et dérivable sur [a,x] (ou [x,a]), donc d'après le théorème des accroissements finis : $\frac{g(x)-g(a)}{x-a} = g'(c_x) \quad \text{pour un certain } c_x \in [a,x] \text{ (ou }]x,a[),$ donc [x,a]. Ce procédé nous fournit une fonction [x,a] and [x,a] be a pour tout [x,a] be a pour tout [x,a] be a pour tout [x,a] be a pour four [

Théorème (Primitivation des développements limités) Soient I un intervalle, $f \in \mathcal{D}(I,\mathbb{R})$ et $a \in I$. Si f' possède un développement limité à l'ordre n au voisinage de a: $f'(x) = \sum_{k=0}^{n} a_k (x-a)^k + \mathrm{o} \big((x-a)^n \big)$ avec $a_0, \dots, a_n \in \mathbb{R}$, alors f possède un développement limité à l'ordre n+1 au voisinage de a: $f(x) = f(a) + \sum_{k=0}^{n} a_k \frac{(x-a)^{k+1}}{k+1} + \mathrm{o} \big((x-a)^{n+1} \big)$.

On peut donc TOUJOURS primitiver terme à terme le développement limité d'une dérivée!

Démonstration La fonction $x \stackrel{g}{\longleftrightarrow} f(x) - f(a) - \sum_{k=0}^{n} a_k \frac{(x-a)^{k+1}}{k+1}$ est dérivable sur I et sa dérivée est la fonction $x \stackrel{g'}{\longleftrightarrow} f'(x) - \sum_{k=0}^{n} a_k (x-a)^k$. Or ici : $g'(x) \underset{x \to a}{=} o((x-a)^n)$, donc : $g(x) \underset{x \to a}{=} g(a) + o((x-a)^{n+1})$ d'après le lemme, et c'est exactement le résultat voulu.

Exemple Pour tout $n \in \mathbb{N}^*$: $\ln(1+x) = \sum_{k=0}^{n} (-1)^{k-1} \frac{x^k}{k} + o(x^n) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \dots + (-1)^{n-1} \frac{x^n}{n} + o(x^n)$.

Démonstration Puisque : $\frac{1}{1-x} = \sum_{k=0}^{n-1} x^k + o(x^{n-1})$, alors : $\frac{1}{1+x} = \sum_{k=0}^{n-1} (-1)^k x^k + o(x^{n-1})$ après composition par $x \mapsto -x$. Primitivons : $\ln(1+x) = \sum_{k=0}^{n} (-1)^{k-1} \frac{x^k}{k} + o(x^n)$ sachant que : $\ln 1 = 0$ et que pour tout $k \in \mathbb{Z}$: $(-1)^{k+1} = (-1)^{k-1}$.

Théorème (Formule de Taylor-Young) Soient I un intervalle, $n \in \mathbb{N}$, $f \in \mathscr{C}^n(I,\mathbb{R})$ et $a \in I$. Alors f possède un développement limité à l'ordre n au voisinage de a. Précisément : $f(x) \underset{x \to a}{=} \sum_{k=0}^n \frac{f^{(k)}(a)}{k!} (x-a)^k + o((x-a)^n).$

Ce résultat est avant tout un théorème d'EXISTENCE de développements limités. Sur cette question, nous disposons à présent de deux équivalences et d'une IMPLICATION (seulement) :

Continuité \iff Existence d'un développement limité à l'ordre 0 Dérivabilité \iff Existence d'un développement limité à l'ordre 1 Classe \mathscr{C}^n \implies Existence d'un développement limité à l'ordre n

Démonstration Par récurrence — au rang $n: \forall f \in \mathscr{C}^n(I,\mathbb{R}), f(x) \underset{x \to a}{=} \sum_{k=0}^n \frac{f^{(k)}(a)}{k!} (x-a)^k + o((x-a)^n).$

Initialisation: Nous savons déjà que pour toute fonction $f: I \longrightarrow \mathbb{R}$ continue: f(x) = f(a) + o(1).

Hérédité: Soit $n \in \mathbb{N}$. On suppose la proposition vraie au rang n. Soit $f \in \mathscr{C}^{n+1}(I,\mathbb{R})$. La fonction f' est de classe \mathscr{C}^n sur I, donc par hypothèse de récurrence :

$$f'(x) \underset{x \to a}{=} \sum_{k=0}^{n} \frac{(f')^{(k)}(a)}{k!} (x-a)^{k} + o((x-a)^{n}) \underset{x \to a}{=} \sum_{k=0}^{n} \frac{f^{(k+1)}(a)}{k!} (x-a)^{k} + o((x-a)^{n}).$$

Le théorème de primitivation des développements limités montre aussitôt le résultat souhaité :

$$f(x) \underset{x \to a}{=} f(a) + \sum_{k=0}^{n} \frac{f^{(k+1)}(a)}{k!} \frac{(x-a)^{k+1}}{k+1} + o((x-a)^{n+1}) \underset{x \to a}{=} f(a) + \sum_{k=0}^{n} \frac{f^{(k+1)}(a)}{(k+1)!} (x-a)^{k+1} + o((x-a)^{n+1})$$

$$= \underset{x \to a}{=} f(a) + \sum_{k=1}^{n+1} \frac{f^{(k)}(a)}{k!} (x-a)^k + o((x-a)^{n+1}) \underset{x \to a}{=} \sum_{k=0}^{n+1} \frac{f^{(k)}(a)}{k!} (x-a)^k + o((x-a)^{n+1}).$$

Exemple Pour tout $n \in \mathbb{N}$: $e^x = \sum_{k=0}^n \frac{x^k}{k!} + o(x^n) = 1 + x + \frac{x^2}{2} + \frac{x^3}{6} + \frac{x^4}{24} + \dots + \frac{x^n}{n!} + o(x^n)$.

III-3) Opérations sur les D.L.:

Remarque. On l'a dit, la formule de Taylor-Young est difficile à appliquer en pratique pour obtenir un DL, car elle impose de calculer les dérivées successives de la fonction. On présente dans cette section des résultats permettant d'obtenir des DL à partir de DL connus :

- par intégration de DL;
- par opérations (combinaison linéaire, produits,...) sur les DL.

Combinaison linéaire, produit

Propriété 24 -

Supposons que f et g admettent des développements limités à l'ordre n en 0:

$$f(x) \underset{x \to 0}{=} P_n(x) + o(x^n)$$
 et $g(x) \underset{x \to 0}{=} Q_n(x) + o(x^n)$.

(1) Pour tout $\lambda,\mu\in\mathbb{K},\,\lambda f+\mu g$ a un développement limité à l'ordre n en 0 :

$$(\lambda f + \mu g)(x) \underset{x \to 0}{=} (\lambda P_n + \mu Q_n)(x) + o(x^n).$$

(2) Le produit fg a un développement limité à l'ordre n en 0 :

$$(fg)(x) \underset{x\to 0}{=} T_n(PQ)(x) + o(x^n)$$

où $T_n(PQ)$ désigne la troncature à l'ordre n du polynôme PQ.

Preuve.

(1) On a:

$$(\lambda f + \mu g)(x) \underset{x \to 0}{=} (\lambda P_n + \mu Q_n)(x) + o(x^n).$$

C'est le $DL_n(0)$ de $\lambda f + \mu g$ car $\lambda P_n + \mu Q_n$ est une fonction polynomiale de degré $\leq n$.

(2) On a par produit des développements limités :

$$f(x)g(x) \underset{x \to 0}{=} (P_n(x) + o(x^n)) (Q_n(x) + o(x^n)) = P_n(x)Q_n(x) + o(x^n)$$

car $P_n(x)o(x^n) + Q_n(x)o(x^n) + o(x^n)o(x^n)$ est négligeable devant x^n en 0.

On sait que $P_n(x)Q_n(x) = T_n(P_nQ_n)(x) + x^{n+1}R_n(x)$ où R_n est une fonction polynomiale. On en déduit que $P_n(x)Q_n(x) = T_n(P_nQ_n)(x) + o(x^n)$ et donc :

$$f(x)g(x) \underset{x\to 0}{=} T_n(P_nQ_n)(x) + o(x^n)$$

qui est le $DL_n(0)$ de fg car $T_n(P_nQ_n)$ est une fonction polynomiale de degré $\leq n$.

Exemple.

♦ Calculons le $DL_3(0)$ de $x \mapsto \cos x \sin x$:

 $\cos x \sin x = \left(1 - \frac{x^2}{2} + o(x^3)\right) \left(x - \frac{x^3}{6} + o(x^3)\right) = x - \frac{x^3}{6} - \frac{x^3}{2} + o(x^3) = x - \frac{2}{3}x^3 + o(x^3).$

♦ Calculons le $DL_3(0)$ de la fonction $f: x \mapsto \frac{e^x}{1-x}$.

$$\frac{1}{1-x} = 1 + x + x^2 + x^3 + o(x^3) \quad \text{ et } \quad e^x = 1 + x + \frac{x^2}{2} + \frac{x^3}{6} + o(x^3).$$

D'où par produit :

$$f(x) = \left(1 + x + x^2 + x^3 + o(x^3)\right) \left(1 + x + \frac{x^2}{2} + \frac{x^3}{6} + o(x^3)\right),\,$$

ce qui donne, en développant et en simplifiant :

$$f(x) = 1 + (x+x) + \left(\frac{x^2}{2} + x^2 + x^2\right) + o(x^3)$$
$$= 1 + 2x + \frac{5}{2}x^2 + \frac{8}{3}x^3 + o(x^3)$$

Composition

Propriété 25

Si $f:I\to J$ et $g:J\to\mathbb{K}$ ont des développements limités en 0 à l'ordre n :

$$f(x) = P_n(x) + o(x^n)$$
 ; $g(x) = Q_n(x) + o(x^n)$,

si $\lim_{x\to 0}f(x)=0,$ alors la composée $g\circ f$ a un développement limité à l'ordre n en 0 :

$$g \circ f(x) = T_n(Q_n \circ P_n)(x) + o(x^n).$$

Preuve. Puisque $\lim_{x\to 0} f(x) = 0$, on peut factoriser dans le DL de f en 0:

$$f(x) = P_n(x) + o(x^n) = x \left(P_{n-1}(x) + o(x^{n-1}) \right).$$

On substitue dans $g \circ f(x) = \sum_{k=0}^{n} q_k(f(x))^k + (f(x))^n \varepsilon_g(f(x))$ le DL de f:

$$g \circ f(x) = \sum_{k=0}^{n} q_k (P_n(x) + o(x^n))^k + x^n (P_{n-1}(x) + o(x^{n-1}))^n \varepsilon_g(f(x)).$$

On regarde à présent chaque terme de cette expression :

• $(P_n(x) + o(x^n))^k$: en développant par la formule du binôme, on a un terme en $(P_n(x))^k$ et tous les autres termes contiennent $o(x^n)$ et sont négligeables devant x^n . Ainsi, on a :

$$(P_n(x) + o(x^n))^k = (P_n(x))^k + o(x^n).$$

• $x^n(P_{n-1}(x) + o(x^{n-1}))^n \varepsilon_g(f(x))$: on a $\lim_{x \to 0} (P_{n-1}(x) + o(x^{n-1}))^n \varepsilon_g(f(x)) = 0$, donc:

$$x^{n}(P_{n-1}(x) + o(x^{n-1}))^{n}\varepsilon_{q}(f(x)) = o(x^{n}).$$

Finalement, on obtient que:

$$g \circ f(x) = \sum_{k=0}^{n} q_k(P_n(x))^k + o(x^n) = Q_n \circ P_n(x) + o(x^n).$$

Et comme $P_n(x)Q_n(x)=T_n(P_nQ_n)(x)+x^{n+1}R_n(x)$ où R_n est une fonction polynomiale, on en déduit que $P_n(x)Q_n(x)=T_n(P_nQ_n)(x)+o(x^n)$ et donc :

$$g \circ f(x) \underset{x \to 0}{=} T_n(Q_n \circ P_n)(x) + o(x^n).$$

C'est bien le $DL_n(0)$ de fg car $T_n(P_nQ_n)$ est une fonction polynomiale de degré $\leq n$.

Exemple. Déterminons le $DL_4(0)$ de $x \mapsto f(x) = (1+x)^x$.

Pour tout $x \in I$, $f(x) = e^{x \ln(1+x)}$ avec $\lim_{x \to 0} x \ln(1+x) = 0$. On utilise la composition des DL. Le développement limité à l'ordre 4 de $x \mapsto x \ln(1+x)$ s'écrit :

$$x\ln(1+x) = x\left(x - \frac{x^2}{2} + \frac{x^3}{3} + o(x^3)\right) = \underbrace{x^2 - \frac{x^3}{2} + \frac{x^4}{3} + o(x^4)}_{=u(x)}.$$

On a $u(x)^2 = x^4 + o(x^4)$, $u(x)^3 = o(x^4)$. Il suffit donc de faire le $DL_2(0)$ de l'exponentielle :

$$e^{u} = 1 + u + \frac{u^{2}}{2} + o(u^{2})$$

On obtient en substituant :

$$(1+x)^x = 1 + \left(x^2 - \frac{x^3}{2} + \frac{x^4}{3}\right) + \frac{1}{2}x^4 + o(x^4)$$

Quotient de DL

Propriété 26

Soient $f, g : D \rightarrow K$

Si f et g ont des développements limités à l'ordre n en 0 et si g admet une limite finie non nulle en 0, alors f/g admet un développement limité à l'ordre n en 0.

Preuve. Puisque $\lim_{x\to 0} g(x) = l \neq 0$, il existe un intervalle J contenant 0 et inclus dans I sur lequel g ne s'annule pas sur $\mathcal{D} \cap J$, et la fonction f/g, définie sur $\mathcal{D} \cap J$.

Écrivons g(x) = l(1 + u(x)) (où $u(x) = \frac{g(x) - l}{l}$. On a alors :

Puisque $\lim_{x\to 0} u(x) = 0$ et que u admet un $DL_n(0)$ (car c'est le cas pour g), on en déduit que $x\mapsto \frac{1}{1+u(x)}$ admet un $DL_n(0)$ par composition des $DL_n(0)$ de $x\mapsto \frac{1}{1+x}$ et de $x\mapsto u(x)$. On obtient ainsi le $DL_n(0)$ de f/g en multipliant le $DL_n(0)$ ainsi obtenu avec celui de f.

▶ Pour faire le DL en 0 d'un quotient $x \mapsto \frac{1}{g(x)}$ avec $\lim_{x \to 0} g \neq 0$, on se ramènera toujours (comme dans la preuve précédente) à un développement limité d'une fonction de la forme :

$$x\mapsto \frac{1}{1+u(x)} \quad avec \quad u(x)\underset{x\to 0}{\longrightarrow} 0.$$

Exemples.

lack Déterminons le $DL_5(0)$ de tan.

sin r

Pour obtenir le $DL_3(0)$ de f, il faut donc le $DL_2(0)$ de h ce qui nécessite un $DL_2(0)$ du numérateur et du dénominateur de h. Cela nécessite donc un $DL_4(0)$ de $x \mapsto e^x - 1 - x$ (on a factorisé par x^2) et un $DL_3(0)$ de $x \mapsto \ln(1+x)$ (on a factorisé par x).

On a $u(x)^2 = \frac{x}{4} + o(x^5)$, $u(x)^3 = o(x^4)$. D'où en substituant :

$$\tan x \underset{x \to 0}{=} \left(x - \frac{x^3}{6} + \frac{x^5}{120} + o(x^5) \right) \left(1 + \frac{x^2}{2} - \frac{x^4}{24} + \frac{x^4}{4} + o(x^5) \right)$$

$$= \left(x - \frac{x^3}{6} + \frac{x^5}{120} + o(x^5) \right) \left(1 + \frac{x^2}{2} + \frac{5x^4}{24} + o(x^5) \right)$$

$$= x - \frac{x^3}{6} + \frac{x^5}{120} + \frac{x^3}{2} - \frac{x^5}{12} + \frac{5x^5}{24} + o(x^5)$$

$$= x + \frac{x^3}{3} + \frac{2x^5}{15} + o(x^5)$$

Remarque. Si g tend vers 0, il est encore possible que la fonction $\frac{f}{g}$ possède un développement limité : si f et g admettent des $DL_n(0)$ de formes normalisées :

$$f(x) = x^{n_1} \left(a_{p_1} + a_{p_1+1}x + \dots + a_{n_1}x^{n_1-p_1} + o(x^{n_1-p_1}) \right)$$

$$g(x) = x^{n_2} \left(b_{p_2} + b_{p_2+1}x + \dots + b_{n_2}x^{n_2-p_2} + o(x^{n_2-p_2}) \right)$$

avec $a_{p_1}, b_{p_2} \neq 0$, alors le quotient s'écrit :

$$\frac{f(x)}{g(x)} = x^{p_1 - p_2} \underbrace{\left(\frac{a_{p_1} + a_{p_1 + 1}x + \dots + a_{n_1}x^{n_1 - p_1} + o(x^{n_1 - p_1})}{b_{p_2} + b_{p_2 + 1}x + \dots + b_{n_2}x^{n_2 - p_2} + o(x^{n_2 - p_2})} \right)}_{=h(x)}$$

Comme $b_{p_2} \neq 0$, la proposition précédente, assure que la fonction h possède un développement limité. De plus, le terme constant du développement limité de la fonction h vaut $\frac{a_{p_1}}{b_{p_2}}$ donc est non nul. Par suite $\frac{f}{g}$ admet un développement limité si et seulement si $p_1 - p_2 \in \mathbb{N}$, c'est à dire $p_2 \leq p_1$, et son ordre est $\min(n_1 - p_1, n_2 - p_2)$.

Exemple. Déterminer, s'il existe, le $DL_3(0)$ de la fonction $x \mapsto \frac{e^x - 1 - x}{\ln(1 + x)}$.

• Prédiction de l'ordre des DL à choisir (au brouillon) :

$$f(x) = \frac{e^x - 1 - x}{\ln(1 + x)} = \frac{\frac{x^2}{2} + \frac{x^3}{6} + \frac{x^4}{24} + \dots}{x + \frac{x^2}{2} + \frac{x^3}{3} + \dots} = \frac{x^2 \left(\frac{1}{2} + \frac{x}{6} + \frac{x^2}{24} + \dots\right)}{x \left(1 + \frac{x}{2} + \frac{x^2}{3} + \dots\right)} = x \times \underbrace{\left[\frac{\frac{1}{2} + \frac{x}{6} + \frac{x^2}{24} + \dots}{1 + \frac{x}{2} + \frac{x^2}{3} + \dots}\right]}_{=h(x)}$$

Pour obtenir le $DL_3(0)$ de f, il faut donc le $DL_2(0)$ de h ce qui nécessite un $DL_2(0)$ du numérateur et du dénominateur de h. Cela nécessite donc un $DL_4(0)$ de $x \mapsto e^x - 1 - x$ (on a factorisé par x^2) et un $DL_3(0)$ de $x \mapsto \ln(1+x)$ (on a factorisé par x).

• Rédaction :

$$e^x - 1 - x = \frac{x^2}{2} + \frac{x^3}{6} + \frac{x^4}{24} + o(x^4)$$
 et $\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} + o(x^3)$

ou sous forme normalisée :

$$e^x - 1 - x = x^2 \left(\frac{1}{2} + \frac{x}{6} + \frac{x^2}{24} + o(x^2) \right)$$
 et $\ln(1+x) = x \left(1 - \frac{x}{2} + \frac{x^2}{3} + o(x^2) \right)$

On obtient l'écriture suivante :

$$f(x) = x \times \left(\frac{1}{2} + \frac{x}{6} + \frac{x^2}{24} + o(x^2)\right) \times \frac{1}{1 - \underbrace{\frac{x}{2} + \frac{x^2}{3} + o(x^2)}_{=u(x)}}$$

Comme on a:

$$u(x)^2 = \frac{x^2}{4} + o(x^2),$$

on obtient:

$$\frac{1}{1 - \frac{x}{2} + \frac{x^2}{3} + o(x^2)} = \frac{1}{1 - u(x)} = 1 + \frac{x}{2} - \frac{x^2}{12} + o(x^2)$$

2 0 . .

Pour obtenir le développement limité de f cherché, il reste à calculer le produit :

$$\begin{split} f(x) &= x \left(\frac{1}{2} + \frac{x}{6} + \frac{x^2}{24} + o(x^2) \right) \times \left(1 + \frac{x}{2} - \frac{x^2}{12} + o(x^2) \right) \\ &= x \left(\frac{1}{2} + \left(\frac{x}{4} + \frac{x}{6} \right) + \left(-\frac{x^2}{24} + \frac{x^2}{12} + \frac{x^2}{24} \right) + o(x^2) \right) \\ &= x \left(\frac{1}{2} + \frac{5x}{2} + \frac{x^2}{12} + o(x^2) \right) \\ &= \frac{x}{2} + \frac{5x^2}{2} + \frac{x^3}{12} + o(x^3) \end{split}$$

III-4) Applications des D.L.:

4.1 Recherche de limites et d'équivalents

Rappel. Supposons que f admette un développement limité à l'ordre n en a de partie régulière non nulle. On écrit sa forme normalisée :

$$f(x) = (x-a)^{p}(a_{p} + a_{p+1}(x-a) + \dots + a_{n-p}(x-a)^{n-p} + o((x-a)^{n-p}).$$

Alors on a : $f(x) \sim a_p(x-a)^p$

Exemple.

 \blacklozenge Déterminons un équivalent au voisinage de 0 de $\frac{\sin(2x)-sh(2x)}{(2x-\sin x-\tan x)^2}$

Cherchons un équivalent du numérateur :

$$\sin(2x) = 2x - \frac{4}{3}x^3 + o(x^3)$$
 et $sh(2x) = 2x + \frac{4}{3}x^3 + o(x^3)$

ce qui donne : $\sin(2x) - sh(2x) \sim -\frac{8}{3}x^3$.

Cherchons un équivalent du dénominateur.

$$2x - \sin x - \tan x = 2x - \left(x - \frac{1}{6}x^3 + o(x^3)\right) - \left(x + \frac{1}{3}x^3 + o(x^3)\right)$$
$$= -\frac{1}{6}x^3 + o(x^3) \sim -\frac{1}{6}x^3$$

On en déduit par produit et quotient d'équivalents :

$$\frac{\sin(2x) - sh(2x)}{(2x - \sin x \tan x)^2} \sim \frac{-\frac{8}{3}x^3}{\left(-\frac{1}{6}x^3\right)^2} \sim -\frac{96}{x^3}$$

4.2 Étude locale d'une fonction

Rappel. Si f admet un $DL_1(a)$, f est dérivable en a et la courbe représentative de f admet une tangente en a.

▶ Pour déterminer la position relative de la courbe représentative d'une fonction f par rapport à sa tangente, on cherche un équivalent de $x \mapsto f(x) - f(a) - (x - a)f'(a)$ en a en effectuant un DL de f:

$$f(x) - f(a) - f'(a)(x - a) \underset{a}{\sim} a_p(x - a)^p$$
 avec $a_p \in \mathbb{R}^*$ et $p \in \mathbb{N} \setminus \{0, 1\}$.

Alors $x \mapsto f(x) - f(a) - f'(a)(x-a)$ est du signe de $a_p(x-a)^p$ au voisinage de a:

- si p est pair, f(x) f(a) f'(a)(x a) est de signe constant au voisinage de a. La courbe est au-dessus ou en-dessous de sa tangente en a (suivant le signe de a_p).
- si p est impair, f(x) f(a) f'(a)(x a) change de signe en a. La courbe traverse sa tangente en a. On parle de **point d'inflexion**.

Remarque. Dans le cas d'un point critique a, c'est à dire si f'(a) = 0, cette étude nous dit si on a un extremum local (si n pair) ou non (si n est impair).

Exemple. Soit $f: x \mapsto \frac{\cos x - 1}{x}$. f admet le $DL_3(0)$ suivant :

$$f(x) = -\frac{1}{2}x + \frac{1}{24}x^3 + o_0(x^3).$$

Ainsi f est dérivable en 0, et $f'(0) = -\frac{1}{2}$. Comme $f(x) + \frac{1}{2}x \underset{x \to 0}{\sim} \frac{1}{24}x^3$, qui change de signe en 0, la courbe représentative de f traverse sa tangente en 0. Ainsi f admet un point d'inflexion en 0.

4.3 Application à l'étude d'asymptotes obliques

Définition.

Soit $f: I \to \mathbb{R}$ définie au voisinage de $\pm \infty$. On dit que f possède un $DL_n(\pm \infty)$ si la fonction $g: u \to f(1/u)$ possède un $DL_n(0)$.

Exemple. Calculons le $DL_2(\infty)$ de $f: x \mapsto \frac{x}{x-1}$.

On pose $u = \frac{1}{x}$. Alors $g(u) = \frac{1}{1-u} = 1 + u + u^2 + o(u^2)$ et on en déduit le $DL_2(\infty)$ de f:

$$f(x) = 1 + \frac{1}{x} + \frac{1}{x^2} + o(\frac{1}{x^2}).$$

Définition.

Soit $f: I \to \mathbb{R}$. On dit que f admet une asymptote oblique en $\pm \infty$ s'il existe $(a, b) \in \mathbb{R}^2$ tel que f(x) - ax - b tende vers 0 en $\pm \infty$.

- ▶ Soit $f: I \to \mathbb{R}$ telle que $f(x) \underset{x \to +\infty}{\longrightarrow} \pm \infty$. On souhaite préciser son comportement en $+\infty$, en étudiant l'existence éventuelle d'une asymptote oblique et sa position relative par rapport à \mathcal{C}_f . Pour cela, on procèdera comme suit :
 - On effectue un $DL_2(+\infty)$ de $\frac{f(x)}{x}$:

$$\frac{f(x)}{x} \underset{x \to +\infty}{=} a_0 + \frac{a_1}{x} + \frac{a_2}{x^2} + o(1/x^2).$$

- En multipliant par x, il vient $f(x) = a_0x + a_1 + \frac{a_2}{x} + o(1/x)$. La courbe admet alors la droite $y = a_0x + a_1$ pour asymptote oblique en $+\infty$.
- La position de la courbe de f par rapport à l'asymptote oblique est donnée par le signe de ^{a2}/_x (si a₂ = 0, on augmente l'ordre du DL jusqu'à trouver un coefficient non nul).

Exemple. Soit $f: x \mapsto \sqrt{\frac{x^3}{x-1}}$. Déterminons l'asymptote éventuelle de f en $+\infty$.

On pose $u = \frac{1}{x}$ et on étudie $\frac{f(x)}{x} = uf(u^{-1}) = \frac{1}{\sqrt{1-u}}$ (on recherche l'asymptote en $+\infty$, donc 0 < u < 1). On effectue le DL(0) de $u \mapsto \frac{1}{\sqrt{1-u}}$:

$$\frac{1}{\sqrt{1-u}} = 1 + \frac{u}{2} + \frac{3u^2}{8} + o_0(u^2).$$

Donc on obtient $f(x) = x + \frac{1}{2} + \frac{3}{8x} + o_{+\infty}(x^{-1})$. La droite $y = x + \frac{1}{2}$ est asymptote à la courbe et le graphe de f est au-dessus de l'asymptote au voisinage de $+\infty$ (car $f(x) - x - \frac{1}{2} \underset{x \to +\infty}{\sim} \frac{3}{8x} > 0$).

DÉVELOPPEMENTS LIMITÉS USUELS

Les formules du tableau qui suit doivent être connues PAR CŒUR sans délai et sans la moindre hésitation.

Pour les fonctions paires, les développements limités sont donnés à l'ordre 2n pour tout $n \in \mathbb{N}$, mais par exemple, puisque vous connaissez un développement limité de la fonction cosinus au voisinage de 0 aux ordres 0, 2, 4, 6..., bien sûr que vous en connaissez un à l'ordre 3, il suffit de tronquer au bon endroit : $\cos x = 1 - \frac{x^2}{2} + \mathrm{o}(x^3)$. Notez bien que ce développement est PLUS FIN que le développement à l'ordre 2 : $\cos x = 1 - \frac{x^2}{2} + \mathrm{o}(x^2)$. Sur le développement à l'ordre 3, on ne voit pas de terme d'ordre 3 mais ce n'est qu'une impression, IL Y A UN TERME D'ORDRE 3, avec un coefficient 0. À l'ordre 2, c'est différent, on ne voit pas de terme d'ordre 3 parce qu'un tel terme est réellement INVISIBLE à ce niveau de précision.

$$\frac{1}{1-x} = \sum_{k=0}^{n} x^{k} + o(x^{n}) = 1 + x + x^{2} + \dots + x^{n} + o(x^{n})$$

$$\ln(1+x) = \sum_{k=0}^{n} (-1)^{k-1} \frac{x^{k}}{k} + o(x^{n}) = x - \frac{x^{2}}{2} + \frac{x^{3}}{3} - \frac{x^{4}}{4} + \dots + (-1)^{n-1} \frac{x^{n}}{n} + o(x^{n})$$

$$e^{x} = \sum_{k=0}^{n} \frac{x^{k}}{k!} + o(x^{n}) = 1 + x + \frac{x^{2}}{2} + \frac{x^{3}}{6} + \frac{x^{4}}{24} + \dots + \frac{x^{n}}{n!} + o(x^{n})$$

$$(1+x)^{\alpha} = 1 + \alpha x + \frac{\alpha(\alpha-1)}{2} x^{2} + \frac{\alpha(\alpha-1)(\alpha-2)}{6} x^{3} + \dots + \frac{\alpha(\alpha-1)(\alpha-2) \dots (\alpha-n+1)}{n!} x^{n} + o(x^{n})$$

$$\sin x = \sum_{k=0}^{n} (-1)^{k} \frac{x^{2k+1}}{(2k+1)!} + o(x^{2n+1}) = x - \frac{x^{3}}{6} + \frac{x^{5}}{120} + \dots + (-1)^{n} \frac{x^{2n+1}}{(2n+1)!} + o(x^{2n+1})$$

$$\cos x = \sum_{k=0}^{n} (-1)^{k} \frac{x^{2k}}{(2k)!} + o(x^{2n}) = 1 - \frac{x^{2}}{2} + \frac{x^{4}}{24} + \dots + (-1)^{n} \frac{x^{2n}}{(2n)!} + o(x^{2n})$$

$$\operatorname{Arctan} x = \sum_{k=0}^{n} (-1)^{k} \frac{x^{2k+1}}{2k+1} + o(x^{2n+1}) = x - \frac{x^{3}}{3} + \frac{x^{5}}{5} - \frac{x^{7}}{7} + \dots + (-1)^{n} \frac{x^{2n+1}}{2n+1} + o(x^{2n+1})$$

$$\tan x = x + \frac{x^{3}}{3} + o(x^{3})$$