

Préing 1 Contrôle Continu n°1 Analyse II

L'usage de tout appareil électronique est interdit.

Date: Lundi 17 mars 2025

Durée: 1h00

Nombre de pages : 2

Il sera tenu compte de la qualité de la rédaction et de la précision des justifications.

Le sujet comporte 4 exercices. L'ordre dans lequel ceux-ci sont traités n'est pas imposé. Un barème est fourni à titre indicatif.

000

Exercice 1. [6,5 points]

On considère la fonction f définie sur \mathbb{R}^* par $f(x) = x^2 \cos\left(\frac{1}{x}\right)$.

1. Montrer que f est prolongeable par continuité en 0.

On désignera à partir de maintenant par f cette fonction prolongée, donc définie sur \mathbb{R} .

- Question de cours : Si g : I → ℝ est une fonction et a ∈ I, donner la définition de « g est dérivable en a », puis de « g est dérivable sur I ».
- 3. Montrer que la fonction f précédemment prolongée est dérivable sur \mathbb{R} .
- La fonction f est-elle de classe € sur R?

Exercice 2. [6,5 points]

Soit $f:[0,1] \to \mathbb{R}$ une fonction dérivable telle que f(0) = f(1) = 0 et f'(0) = 0.

- 1. On définit la fonction g par $g(x) = \frac{f(x)}{x}$ pour $x \in]0,1]$. Justifier que g peut être prolongée en une fonction continue sur [0,1].
- Question de cours : Rappeler l'énoncé du théorème de Rolle, pour une fonction h sur un intervalle [a,b].
- 3. Montrer qu'il existe $c \in]0,1[$ tel que g'(c) = 0.
- Calculer l'expression de g'(c) en fonction de f(c) et f'(c). En déduire, en utilisant la question précédente, que la tangente à la courbe de f en l'abscisse c passe par l'origine du repère.

Exercice 3. [3 points]

Pour tout $n \in \mathbb{N}$, calculer l'expression de la dérivée n-ème de $f: x \mapsto (x^3 + 2x - 7)e^x$.

Exercice 4. [4 points]

1. Déserminer un équivalent simple de (u_n) définie par :

$$u_n = \frac{\ln(n+1) - \ln(n)}{\sqrt{n+1} - \sqrt{n-1}}$$

2. Montrer à l'aide d'équivalents que la suite (v_n) converge vers e:

$$\nu_n = \left(1 + \sin\left(\frac{1}{n}\right)\right)^n$$