

TD5 – Déterminants

Exercice 1. Calculer le déterminant des matrices suivantes.

1.
$$A := \begin{pmatrix} 2 & -5 \\ 5 & -2 \end{pmatrix}$$
.
2. $B := \begin{pmatrix} 7 & 11 \\ -8 & 5 \end{pmatrix}$.
3. $C := \begin{pmatrix} 1/4 & 2 \\ -1 & 8 \end{pmatrix}$.
4. $D := \begin{pmatrix} -7 & 14 \\ 1 & 0 \end{pmatrix}$.
5. $E := \begin{pmatrix} 1 & 0 & 6 \\ 3 & 4 & 15 \\ 5 & 6 & 21 \end{pmatrix}$.
6. $F := \begin{pmatrix} 1 & 0 & -1 \\ 2 & 3 & 5 \\ 4 & 1 & 3 \end{pmatrix}$.
7. $G := \begin{pmatrix} 1 & 1 & 1 \\ 2 & -1 & -1 \\ -4 & 5 & 6 \end{pmatrix}$.
9. $J := \begin{pmatrix} 0 & 1 & 2 & 3 \\ 1 & 2 & 3 & 0 \\ 2 & 3 & 0 & 1 \\ 3 & 0 & 1 & 2 \end{pmatrix}$.

Exercice 2. Dans \mathbb{R}^3 muni de sa base canonique \mathscr{B} , on considère les vecteurs $u_1 := (1,1,1), u_2 := (1,2,3)$ et $u_3 := (1,4,m)$.

- **1.** Calculer $\det_{\mathcal{B}}(u_1, u_2, u_3)$.
- **2.** En déduire pour quels valeurs de m la famille (u_1, u_2, u_3) est une base de \mathbb{R}^3 .

Exercice 3. Soit $m \in \mathbb{R}$ et soit la matrice :

$$A(m) := \begin{pmatrix} 1 & m^2 & 1 \\ m^2 & 1 & 1 \\ 1 & 1 & m \end{pmatrix}.$$

- 1. Calculer $\det A(m)$ sous forme d'un polynôme m factorisé.
- **2.** Pour quelles valeurs de m les vecteurs $(1, m^2, 1)$, $(m^2, 1, 1)$ et (1, 1, m) forment-ils une base de \mathbb{R}^3 ?
- 3. À l'aide de la formule de la comatrice, calculer l'inverse de A(m) lorsqu'il existe.

Exercice 4. Soient $a, b, c, d \in \mathbb{R}$ et soit :

$$M := \begin{pmatrix} a & a & a & a \\ a & b & b & b \\ a & b & c & c \\ a & b & c & d \end{pmatrix}.$$

- 1. À l'aide d'opérations élémentaires sur les lignes et les colonnes de M, calculer $\det(M)$. On donnera le résultat sous la forme d'un produit de formes linéaires en a, b, c, d.
- **2.** En déduire pour quelles valeurs de a, b, c, d la matrices M n'est pas inversible.

Exercice 5. Soit $x \in \mathbb{R}$ et soient les déterminants :

$$D_2(x) := \begin{vmatrix} x & 1 \\ 1 & x \end{vmatrix}, \quad D_3(x) := \begin{vmatrix} x & 1 & 1 \\ 1 & x & 1 \\ 1 & 1 & x \end{vmatrix}, \quad D_n(x) := \begin{vmatrix} x & 1 & \cdots & \cdots & 1 \\ 1 & x & 1 & \cdots & \cdots & \vdots \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ 1 & \cdots & \cdots & 1 & x \end{vmatrix}.$$

- 1. Calculer $D_2(x)$ et $D_3(x)$ et donner le résultat sous forme d'un polynôme en x factorisé.
- **2.** Faire de même avec $D_n(x)$.

Indication: effectuer l'opération élémentaire $L_1 \leftarrow \sum_i L_i$.

Exercice 6. Soient $A \in \mathcal{M}_k(\mathbb{K})$, $B \in \mathcal{M}_{k,n-k}(\mathbb{K})$ et $D \in \mathcal{M}_{n-k}(\mathbb{K})$. On considère la la matrice par blocs :

$$M := \left(\begin{array}{c|c} A & B \\ \hline 0 & D \end{array}\right).$$

- **1.** Montrer que $M = \begin{pmatrix} I_k & 0 \\ \hline 0 & D \end{pmatrix} \times \begin{pmatrix} A & B \\ \hline 0 & I_{n-k} \end{pmatrix}$.
- **2.** En déduire que $det(M) = det(A) \times det(D)$.
- **3.** Soit $C \in \mathcal{M}_{n-k,k}(\mathbb{K})$, on considère à présent la matrice $M' := \left(\begin{array}{c|c} A & B \\ \hline C & D \end{array}\right)$.
 - a. On suppose que A est inversible. Montrer que :

$$\left(\begin{array}{c|c} I_k & 0 \\ \hline -CA^{-1} & I_{n-k} \end{array}\right) \times \left(\begin{array}{c|c} A & B \\ \hline C & D \end{array}\right) = \left(\begin{array}{c|c} A & B \\ \hline 0 & -CA^{-1}B + D \end{array}\right).$$

- **b.** En déduire que si A et C commutent, alors det(M') = det(AD CB).
- **c.** Cette formule est-elle encore vraie si *A* et *C* ne commutent pas?

Exercice 7. Soit $n \ge 2$ et $\alpha_1, \ldots, \alpha_n \in \mathbb{C}$. On appelle déterminant de Vandermonde le déterminant suivant :

$$V_n(\alpha_1,\ldots,\alpha_n) \coloneqq \det(M), \qquad M \coloneqq egin{pmatrix} 1 & 1 & \cdots & 1 \\ lpha_1 & lpha_2 & \cdots & lpha_n \\ lpha_1^2 & lpha_2^2 & \cdots & lpha_n^2 \\ dots & dots & dots \\ lpha_1^{n-1} & lpha_2^{n-1} & \cdots & lpha_n^{n-1} \end{pmatrix}.$$

- **1.** Calculer $V_2(\alpha_1, \alpha_2)$.
- **2.** Montrer que s'il existe $i \neq j$ tels que $\alpha_i = \alpha_j$, alors $V_n(\alpha_1, ..., \alpha_n) = 0$.
- **3.** On suppose que les α_i sont tous distincts.
 - **a.** Montrer que les lignes de la matrice M sont linéairement indépendantes. Indication : soient $\lambda_1, \ldots, \lambda_n \in \mathbb{C}$ tels que $\lambda_1 L_1 + \cdots + \lambda_n L_n = 0_{\mathbb{C}^n}$ où L_i est la i-ième ligne de M, étudier le polynôme $P(X) := \lambda_n X^{n-1} + \cdots + \lambda_2 X + \lambda_1$.
 - **b.** En déduire que $\forall k \in \{1, ..., n\}, V_k(\alpha_1, ..., \alpha_k) \neq 0$.
 - **c.** Soit $f(x) := V_n(\alpha_1, ..., \alpha_{n-1}, x)$. Montrer que f est une fonction polynomiale de degré n-1, de coefficient dominant $V_{n-1}(\alpha_1, ..., \alpha_{n-1})$.
 - **d.** Montrer que $\alpha_1, \dots, \alpha_{n-1}$ sont les racines de f, et en déduire que :

$$V_n(\alpha_1,\ldots,\alpha_n)=V_{n-1}(\alpha_1,\ldots,\alpha_{n-1})\prod_{k=1}^{n-1}(\alpha_n-\alpha_k).$$

- **e.** En déduire l'expression de $V_3(\alpha_1, \alpha_2, \alpha_3)$.
- **f.** Quelle est l'expression générale de $V_n(\alpha_1,...,\alpha_n)$?