

TD4 - Calcul matriciel

Exercice 1. Dans chaque cas, dire si les produits AB et BA existent, et les calculer le cas échéant.

1.
$$A := \begin{pmatrix} 1 & 2 & 1 \\ 3 & 4 & -1 \end{pmatrix}$$
 et $B := \begin{pmatrix} 1 & 0 \\ 2 & 1 \\ 0 & 1 \end{pmatrix}$.

3.
$$A := \begin{pmatrix} 1 \\ 2 \end{pmatrix}$$
 et $B := \begin{pmatrix} 0 & 0 \\ 1 & -1 \\ 0 & 1 \end{pmatrix}$.

2.
$$A := \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$$
 et $B := \begin{pmatrix} 1 & 0 \\ 2 & 1 \\ 0 & 1 \end{pmatrix}$.

4.
$$A := \begin{pmatrix} 1 & 0 & 1 \\ 1 & 2 & -1 \\ 3 & 1 & 0 \end{pmatrix}$$
 et $B := \begin{pmatrix} 1 & 1 & -1 \\ 0 & 1 & 2 \\ -1 & -2 & 0 \end{pmatrix}$.

Exercice 2. On considère les matrices $A := \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$ et $B := \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}$. Calculer AB, BA, $(A - B)^2$ et $A^2 - 2AB + B^2$. Que remarquez-vous?

Exercice 3. On considère $\mathscr{S}_2(\mathbb{R})$ l'ensemble des matrices 2×2 symétriques réelles, et $\mathscr{A}_2(\mathbb{R})$ l'ensemble des matrices 2×2 antisymétriques réelles :

$$\mathscr{S}_2(\mathbb{R}) := \left\{ A \in \mathscr{M}_2(\mathbb{R}) \mid {}^t A = A \right\}, \qquad \mathscr{A}_2(\mathbb{R}) := \left\{ A \in \mathscr{M}_2(\mathbb{R}) \mid {}^t A = -A \right\}.$$

- 1. Vérifier que $\mathscr{S}_2(\mathbb{R})$ et $\mathscr{A}_2(\mathbb{R})$ sont des sous-espaces vectoriels de $\mathscr{M}_2(\mathbb{R})$.
- **2.** Déterminer une base de $\mathcal{S}_2(\mathbb{R})$ et de $\mathcal{A}_2(\mathbb{R})$, et en déduire leurs dimensions.
- **3.** Déterminer $\mathscr{S}_2(\mathbb{R}) \cap \mathscr{A}_2(\mathbb{R})$, et en déduire que $\mathscr{S}_2(\mathbb{R})$ et de $\mathscr{A}_2(\mathbb{R})$ sont supplémentaires dans $\mathscr{M}_2(\mathbb{R})$.
- **4.** En déduire que toute matrice $M \in \mathcal{M}_2(\mathbb{R})$ s'écrit de manière unique comme la somme d'une matrice symétrique S et d'une matrice antisymétrique S, et déterminer l'expression de S et S en fonction de S et S et S en fonction de S et S et S et S en fonction de S et S et S et S en fonction de S et S et S et S en fonction de S et S et S et S en fonction de S et S et S en fonction de S et S et S en fonction de S et S et S et S en fonction de S et S

Exercice 4. Soient *A* et *B* les matrices :

$$A := \begin{pmatrix} 1 & -2 & 3 \\ 4 & 1 & 1 \\ 1 & 2 & -2 \end{pmatrix}, \qquad B := \begin{pmatrix} 4 & -2 & 5 \\ -9 & 5 & -11 \\ -7 & 4 & -9 \end{pmatrix}.$$

- **1.** Vérifier que *B* est l'inverse de *A*.
- **2.** En déduire que le système suivant possède une unique solution et la calculer :

$$\begin{cases} x - 2y + 3z = 3 \\ 4x + y + z = 4 \\ x + 2y - 2z = 5. \end{cases}$$

Exercice 5. Soit $A := \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$.

- 1. Calculer A^2 et vérifier que $A^2 = A + 2I_3$.
- **2.** En déduire que A est inversible et exprimer A^{-1} en fonction de A.

Exercice 6. Vérifier que pour toute matrice $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathcal{M}_2(\mathbb{C})$, on a :

$$A^{2} - (a+d)A + (ad-bc)I_{2} = 0_{2}$$
.

En déduire une condition nécessaire et suffisante sur les nombres a, b, c, d pour que A soit inversible, et déterminer l'expression de A^{-1} dans ce cas.

Exercice 7. Soit
$$A := \begin{pmatrix} 1 & 3 & 3 \\ 4 & 2 & 1 \\ 5 & 4 & 3 \end{pmatrix}$$
.

- **1.** Soient $X = \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathcal{M}_{3,1}(\mathbb{R})$ et $Y = \begin{pmatrix} a \\ b \\ c \end{pmatrix} \in \mathcal{M}_{3,1}(\mathbb{R})$. Résoudre le système linéaire AX = Y. En déduire que A est inversible et déterminer l'inverse de A.
- **2.** Recalculer l'inverse de *A* en utilisant la méthode de Gauss–Jordan.

Exercice 8. Calculer l'inverse des matrices suivantes, s'il existe.

$$\mathbf{1.} \ \ A := \begin{pmatrix} 1 & 0 & 1 \\ 2 & -1 & 1 \\ -1 & 1 & -1 \end{pmatrix}.$$

3.
$$C := \begin{pmatrix} 2 & 0 & 1 \\ -1 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix}$$
.

5.
$$E := \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & -1 & 0 \end{pmatrix}$$
.

2.
$$B := \begin{pmatrix} 1 & 1 & -1 \\ 2 & 0 & 1 \\ 2 & 1 & -1 \end{pmatrix}$$
.

4.
$$D := \begin{pmatrix} 3 & 2 & -1 \\ 2 & 0 & 1 \\ -2 & 2 & 1 \end{pmatrix}$$
.

Exercice 9. Soit $A := \begin{pmatrix} 1 & -2 & 2 & 1 \\ 2 & -4 & 3 & 4 \\ 3 & -3 & 4 & 7 \\ -1 & 5 & 0 & -4 \end{pmatrix}$. Démontrer que A est inversible et calculer A^{-1} .

Exercice 10. Soient les matrices $A := \begin{pmatrix} 2 & -1 & 0 \\ -2 & 1 & -2 \\ 1 & 1 & 3 \end{pmatrix}$ et $P := \begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & -1 \\ -1 & -1 & 0 \end{pmatrix}$.

- 1. Montrer que P est inversible et calculer P^{-1}
- **2.** Calculer $D := P^{-1}AP$ et vérifier que D est une matrice diagonale.
- **3.** Démontrer par récurrence que $\forall n \in \mathbb{N}$, $D^n = P^{-1}A^nP$.
- **4.** Calculer D^n pour tout $n \in \mathbb{N}$, et en déduire l'expression de A^n pour tout $n \in \mathbb{N}$.

Exercice 11. Soit $A := \begin{pmatrix} 3 & 1 & 0 \\ 0 & 3 & 2 \\ 0 & 0 & 3 \end{pmatrix}$.

- 1. Écrire $A = 3I_3 + N$ avec N une matrice triangulaire supérieure stricte à déterminer.
- **2.** Calculer N^2 , N^3 et N^p pour tout p > 3.
- **3.** En déduire A^p pour tout $p \in \mathbb{N}$.
- **4.** Application : soient $(x_n)_{n\in\mathbb{N}}$, $(y_n)_{n\in\mathbb{N}}$ et $(z_n)_{n\in\mathbb{N}}$ trois suites telles que $x_0=1$, $y_0=2$, $z_0=7$ et :

$$\forall n \in \mathbb{N}, \quad \begin{cases} x_{n+1} = 3x_n + y_n \\ y_{n+1} = 3y_n + 2z_n \\ z_{n+1} = 3z_n. \end{cases}$$

2

On pose $X_n := \begin{pmatrix} x_n \\ y_n \\ z_n \end{pmatrix}$.

- **a.** Vérifier que $X_{n+1} = AX_n$ pour tout $n \in \mathbb{N}$.
- **b.** Démontrer par récurrence que $\forall n \in \mathbb{N}, X_n = A^n X_0$.
- **c.** En déduire l'expression de x_n , y_n et z_n en fonction de n.