

TD2 - Espaces vectoriels

Sous-espaces vectoriels

Exercice 1. Tracer les sous-ensembles de \mathbb{R}^2 suivants, puis déterminer ceux qui sont stables par addition, ceux qui sont stables par multiplication par un scalaire, et ceux qui sont des sous-espaces vectoriels de \mathbb{R}^2 .

1.
$$A := \{(x, y) \in \mathbb{R}^2 \mid x + 2y = 0\}.$$

2.
$$B := \{(x, y) \in \mathbb{R}^2 \mid x + 2y = 1\}.$$

3.
$$C := \mathbb{Z}^2$$

4.
$$D := \{(x, y) \in \mathbb{R}^2 \mid |x| = |y|\}.$$

5.
$$E := \{(x, y) \in \mathbb{R}^2 \mid y = x^2\}.$$

6.
$$F := \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 = 0\}.$$

7.
$$G := \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 = 1\}.$$

8.
$$H := \{(x, y) \in \mathbb{R}^2 \mid x \ge 0 \text{ et } y \ge 0\}.$$

Exercice 2. Parmi les ensembles suivants, déterminer lesquels sont des sous-espaces vectoriels de \mathbb{R}^3 .

1.
$$A := \{(x, y, z) \in \mathbb{R}^3 \mid x + 4y - z = 0\}.$$

2.
$$B := \{(x, y, z) \in \mathbb{R}^3 \mid x + 4y - z = 3\}.$$

3.
$$C := \{(x, y, z) \in \mathbb{R}^3 \mid 2z = 3y\}.$$

4.
$$D := \{(2\lambda, \lambda, -\lambda) : \lambda \in \mathbb{R}\}.$$

5.
$$E := \{(x, y, z) \in \mathbb{R}^3 \mid x + 4z = 0 \text{ et } x + y + z = 0\}.$$

6.
$$F := \{(x, y, z) \in \mathbb{R}^3 \mid x + 4z = 0 \text{ ou } x + y + z = 0\}.$$

Exercice 3. Soit E un \mathbb{K} -espace vectoriel et soient F et G deux sous-espaces vectoriels de E.

- **1.** Montrer que $F \cap G$ est un sous-espace vectoriel de E.
- **2.** L'ensemble F^{c} est-il un sous-espace vectoriel de E?
- **3.** Montrer que $F \cup G$ est un sous-espace vectoriel de E si et seulement si $F \subset G$ ou $G \subset F$.

Exercice 4. Parmi les ensembles suivants, déterminer lesquels sont des sous-espaces vectoriels de $\mathbb{R}[X]$.

1.
$$A := \{ P \in \mathbb{R}[X] \mid P'(X) = 2 \}.$$

2.
$$B := \{ P \in \mathbb{R}[X] \mid P(X) = XP'(X) + P(0) \}.$$

3.
$$C := \{ P \in \mathbb{R}[X] \mid X^2 + 1 \text{ divise } P \}.$$

4.
$$D := \{ P \in \mathbb{R}[X] \mid \deg P = n \}$$
 où $n \in \mathbb{N}$.

2.
$$B := \{ P \in \mathbb{R}[X] \mid P(X) = XP'(X) + P(0) \}.$$
 5. $E := \{ P \in \mathbb{R}[X] \mid \deg P \le n \}$ où $n \in \mathbb{N}$.

6.
$$F := \{ P \in \mathbb{R}[X] \mid P \circ Q = Q \circ P \}$$
 où $Q(X) := X^2$.

Exercice 5. Parmi les ensembles suivants, établir lesquels sont des sous-espaces vectoriels de l'espace des applications de \mathbb{R} dans \mathbb{R} .

1.
$$A := \{ f \in \mathcal{F}(\mathbb{R}, \mathbb{R}) \mid f(1) = 0 \}.$$

2.
$$B := \{ f \in \mathscr{F}(\mathbb{R}, \mathbb{R}) \mid f(0) = 1 \}.$$

$$\textbf{3.} \ \ C \coloneqq \big\{ f \in \mathcal{F}(\mathbb{R},\mathbb{R}) \ \big| \ f(0)f(1) = 0 \big\}.$$

4.
$$D := \{ f \in \mathscr{F}(\mathbb{R}, \mathbb{R}) \mid f \text{ est bijective} \}.$$

5.
$$E := \left\{ f \in \mathscr{C}^0(\mathbb{R}, \mathbb{R}) \, \middle| \, \int_0^1 f(x) \, \mathrm{d}x = 0 \right\}.$$

6.
$$F := \{ f \in \mathcal{C}^1(\mathbb{R}, \mathbb{R}) \mid f' + 2f = 0 \}$$

Exercice 6. Dans l'espace vectoriel des suites réelles, déterminer si les ensembles suivants sont des sousespaces vectoriels.

1.
$$A := \{(u_n)_{n \in \mathbb{N}} \in \mathbb{R}^{\mathbb{N}} \mid (u_n)_{n \in \mathbb{N}} \text{ converge} \}$$

1.
$$A := \{(u_n)_{n \in \mathbb{N}} \in \mathbb{R}^{\mathbb{N}} \mid (u_n)_{n \in \mathbb{N}} \text{ converge}\}.$$
 4. $D := \{(u_n)_{n \in \mathbb{N}} \in \mathbb{R}^{\mathbb{N}} \mid (u_n)_{n \in \mathbb{N}} \text{ est arithmétique}\}.$

2.
$$B := \{(u_n)_{n \in \mathbb{N}} \in \mathbb{R}^{\mathbb{N}} \mid (u_n)_{n \in \mathbb{N}} \text{ diverge} \}$$

2.
$$B := \{(u_n)_{n \in \mathbb{N}} \in \mathbb{R}^{\mathbb{N}} \mid (u_n)_{n \in \mathbb{N}} \text{ diverge}\}.$$

5. $E := \{(u_n)_{n \in \mathbb{N}} \in \mathbb{R}^{\mathbb{N}} \mid (u_n)_{n \in \mathbb{N}} \text{ est géométrique}\}.$

3. $C := \{(u_n)_{n \in \mathbb{N}} \in \mathbb{R}^{\mathbb{N}} \mid (u_n)_{n \in \mathbb{N}} \text{ est stationnaire}\}.$

3.
$$C := \{(u_n)_{n \in \mathbb{N}} \in \mathbb{R}^{\mathbb{N}} \mid (u_n)_{n \in \mathbb{N}} \text{ est croissante} \}$$

6.
$$F := \{(u_n)_{n \in \mathbb{N}} \in \mathbb{R}^{\mathbb{N}} \mid (u_n)_{n \in \mathbb{N}} \text{ est stationnaire} \}$$

Rappel: une suite $(u_n)_{n\in\mathbb{N}}$ est stationnaire si $\exists c\in\mathbb{R}, \exists n_0\in\mathbb{N}, \forall n\geq n_0, u_n=c$.

2 Familles libres/liées

Exercice 7. On se place dans l'espace vectoriel \mathbb{R}^3 .

- 1. Écrire si possible le vecteur v comme combinaison linéaire des vecteurs u_1, u_2, u_3 :
 - **a.** $v := (1, -2, 5), u_1 := (1, 1, 1), u_2 := (2, -1, 1) \text{ et } u_3 := (1, 2, 3).$
 - **b.** $v := (2, -5, 3), u_1 := (1, -3, 2), u_2 := (2, -4, -1) \text{ et } u_3 := (1, -5, 7).$
- **2.** Pour quelle(s) valeur(s) de k le vecteur u := (1, -2, k) est-il combinaison linéaire de v := (3, 0, -2) et w := (2, -1, -5)?

Exercice 8. Dans \mathbb{R}^4 , soient les vecteurs u := (-1,1,1,0) et v := (0,0,1,1).

- 1. Montrer que *u* et *v* sont linéairement indépendants.
- **2.** Déterminer une condition nécessaire et suffisante sur les réels x, y, z, t pour que $(x, y, z, t) \in \text{Vect}(u, v)$.
- 3. En déduire des équations cartésiennes du plan engendré par u et v.

Exercice 9. Les vecteurs de \mathbb{R}^4 suivants sont-ils linéairement indépendants? Donner les relations de dépendance linéaire le cas échéant.

- **1.** $e_1 := (3,0,1,-2), e_2 := (1,5,0,-1), e_3 := (7,5,2,1).$
- **2.** $e_1 := (1, 1, 1, 1), e_2 := (1, 1, 1, -1), e_3 := (1, 1, -1, 1), e_4 := (1, -1, 1, 1).$
- **3.** $e_1 := (0,0,1,0), e_2 := (0,0,0,1), e_3 := (1,0,0,0), e_4 := (0,1,0,0).$
- **4.** $e_1 := (2, -1, 3, 1), e_2 := (1, 1, 1, 1), e_3 := (4, 1, 5, 3), e_4 := (1, -2, 2, 0).$
- **5.** $e_1 := (1,2,3,4), e_2 := (1,1,1,3), e_3 := (2,1,1,1), e_4 := (-1,0,-1,2), e_5 := (2,3,0,1).$

Exercice 10. Soit (u_1, u_2, u_3) une famille libre d'un espace vectoriel E. Soient v_1, v_2 et v_3 les vecteurs :

$$v_1 := 2u_1 + u_2 + 3u_3$$
, $v_2 := u_1 - u_2 - u_3$, $v_3 := u_1 + 2u_2 + u_3$.

Montrer que la famille (v_1, v_2, v_3) est libre.

Exercice 11. Soient $P_1, ..., P_n \in \mathbb{K}[X]$ des polynômes dont les degrés sont deux à deux distincts (c.-à-d. $\forall i, j \in \{1, ..., n\}, \ i \neq j \implies \deg P_i \neq \deg P_j$). Montrer que la famille $(P_1, ..., P_n)$ est libre.

3 Bases et dimension

Exercice 12. Pour chaque famille de vecteurs, déterminer s'il s'agit d'une base de \mathbb{R}^3 .

1. A := ((1,3,1), (1,3,0))

- **3.** $C := \{(1,0,1), (0,1,1), (2,1,3)\}$
- **2.** B := ((1, -1, 0), (0, 1, 1), (1, 1, 1), (0, 0, 1))
- **4.** D := ((1,0,0), (1,1,0), (1,1,1))

Exercice 13. Sachant que dans chaque cas, la famille A est génératrice de \mathbb{R}^4 et la famille B est libre, compléter la famille B avec des vecteurs de la famille A pour former une base de \mathbb{R}^4 .

- 1. A := ((1,1,0,0), (0,1,1,0), (0,0,0,1), (0,1,0,1)) et B := ((1,0,2,3), (0,1,-2,-3)).
- **2.** A := ((1,0,0,0), (0,0,1,0), (5,1,11,0), (-4,0,-6,1)) et B := ((1,0,1,0), (0,2,0,3)).

Exercice 14. En utilisant des opérations élémentaires sur les vecteurs, donner une base et la dimension de Vect(A), Vect(B) et Vect(C).

- 1. $A := \{(1,0,1,-1), (3,-2,3,5), (2,-1,2,2), (5,-2,5,3)\}.$
- **2.** $B := \{(1,0,1,2,-1), (0,1,-2,1,3), (2,1,0,5,1), (1,-1,3,1,-4)\}.$
- **3.** $C := \{(1,2,0,1,0), (2,4,1,4,3), (1,2,2,5,-2), (-1,-2,3,5,4)\}.$

Exercice 15. Soient les sous-espaces vectoriels de \mathbb{R}^4 :

$$E := \{(x, y, z, t) \in \mathbb{R}^4 \mid y + z + t = 0\}, \quad F := \{(x, y, z, t) \in \mathbb{R}^4 \mid x + y = 0 \text{ et } z = 0\}.$$

Déterminer des bases de E, F et $E \cap F$.

Exercice 16. Dans \mathbb{R}^4 , soit F := Vect(u, v, w) où u := (1, 1, -1, 1), v := (0, 2, -1, 2) et w := (-2, -3, 1, -1), et soit H le sous-espace vectoriel :

$$H := \{(x, y, z, t) \in \mathbb{R}^4 \mid 2x - y + 4z + 3t = 0\}.$$

- 1. Montrer que u, v et w sont linéairement indépendants.
- **2.** Montrer que H est un hyperplan de \mathbb{R}^4 .
- **3.** Montrer que F = H.

Exercice 17. Soient les polynômes $P_1(X) := 1 - X$, $P_2(X) := 1 - X^2$, $P_3(X) := X^3 - X^2 + X$, $P_4(X) := X^3 + X + 1$ et $P_5(X) := X^3$.

- 1. Sans calcul, dire si la famille $(P_1, P_2, P_3, P_4, P_5)$ est libre ou liée.
- **2.** Montrer que (P_1, P_2, P_3, P_4) est une base de $\mathbb{R}_3[X]$.
- 3. Déterminer les coordonnées de P_5 dans cette base.

Exercice 18. Soit $n \in \mathbb{N}$ et soit $\alpha \in \mathbb{K}$. Montrer que la famille $(1, X - \alpha, (X - \alpha)^2, ..., (X - \alpha)^n)$ est une base de $\mathbb{K}_n[X]$, et déterminer les coordonnées de tout polynôme $P \in \mathbb{K}_n[X]$ dans cette base.

Exercice 19. Soit $E := \mathbb{R}^{\mathbb{N}}$ l'espace vectoriel des suites réelles et soit F l'ensemble :

$$F \coloneqq \big\{ (u_n)_{n \in \mathbb{N}} \in E \,|\, \forall \, n \in \mathbb{N}, \ u_{n+2} = u_{n+1} + 6u_n \big\}.$$

- **1.** Montrer que *F* est un sous-espace vectoriel de *E*.
- **2.** Soient $a_n := (-2)^n$ et $b_n := 3^n$. Montrer que $(a_n)_{n \in \mathbb{N}}$ et $(b_n)_{n \in \mathbb{N}}$ sont des vecteurs de F.
- **3.** Montrer que $(a_n)_{n\in\mathbb{N}}$ et $(b_n)_{n\in\mathbb{N}}$ forment une famille libre.
- **4.** L'objectif de cette question est de montrer que les suites $(a_n)_{n\in\mathbb{N}}$ et $(b_n)_{n\in\mathbb{N}}$ forment une famille génératrice de F. Fixons une suite $(u_n)_{n\in\mathbb{N}} \in F$. Pour $\lambda, \mu \in \mathbb{R}$, on considère la suite $(v_n)_{n\in\mathbb{N}}$ définie pour tout $n\in\mathbb{N}$ par :

$$v_n := \lambda a_n + \mu b_n$$
.

- **a.** Expliquer pourquoi $(v_n)_{n\in\mathbb{N}}\in F$.
- **b.** Montrer qu'il existe des valeurs de λ et μ pour lesquelles $v_0 = u_0$ et $v_1 = u_1$.
- **c.** Pour ces valeurs de λ et μ , démontrer par récurrence double que : $\forall n \in \mathbb{N}, \ \nu_n = u_n$.
- **d.** En déduire que $(a_n)_{n\in\mathbb{N}}$ et $(b_n)_{n\in\mathbb{N}}$ forment une famille génératrice de F.
- **5.** Quelle est la dimension de F?
- **6.** Déterminer une suite $(u_n)_{n\in\mathbb{N}}\in F$ telle que $u_0=0$ et $u_1=3$. Cette suite est-elle unique?

4 Sommes de sous-espaces

Exercice 20. Dans \mathbb{R}^3 , on considère $F := \{(x, y, z) \in \mathbb{R}^3 \mid 2x - y + z = 0\}$ et G := Vect(v) où v := (-1, 1, 0).

- **1.** Montrer que F est un sous-espace vectoriel de \mathbb{R}^3 et déterminer une base de F.
- **2.** Montrer que $F \oplus G = \mathbb{R}^3$.

Exercice 21. Dans \mathbb{R}^4 , on considère les sous-espaces vectoriels :

$$F := \big\{ (x,y,z,t) \in \mathbb{R}^4 \, \big| \, x+y = 0 \text{ et } z+t = 0 \big\}, \qquad G := \big\{ (x,y,z,t) \in \mathbb{R}^4 \, \big| \, x-y = 0 \text{ et } z-t = 0 \big\}.$$

- 1. Déterminer les dimensions de F et de G.
- **2.** Déterminer $F \cap G$.
- **3.** En déduire que $F + G = \mathbb{R}^4$.

Exercice 22. Dans \mathbb{R}^3 , soient *F* le plan d'équation x + y + z = 0 et *G* le plan d'équation x + 2y + 3z = 0.

- **1.** Montrer que $F + G = \mathbb{R}^3$.
- **2.** Sans déterminer $F \cap G$, justifier si F et G sont supplémentaires dans \mathbb{R}^3 .

Exercice 23. Dans \mathbb{R}^4 , soit F le plan vectoriel dirigé par $u_1 := (2,3,0,1)$ et $u_2 := (-1,2,1,-2)$ et soit G le plan vectoriel dirigé par $v_1 := (4,-1,-2,5)$ et $v_2 := (1,0,0,0)$.

- 1. Déterminer une base de F + G.
- 2. La somme est-elle directe?

Exercice 24. Soit $E := \mathcal{C}^0([0,1],\mathbb{R})$ l'espace vectoriel des fonctions continues sur [0,1]. Soit F le sous-espace vectoriel :

$$F := \left\{ f \in E \middle| \int_0^1 f(x) \, \mathrm{d}x = 0 \right\},\,$$

et soit G le sous-espace vectoriel des fonctions constantes.

- **1.** Vérifier que *F* et *G* sont bien des sous-espaces vectoriels de *E*.
- **2.** Montrer que F et G sont supplémentaires dans E.

Exercice 25. Soit E un espace vectoriel de dimension finie et soient F, G et H des sous-espaces vectoriels de E.

- **1.** Montrer que $(F \cap G) + (F \cap H) \subset F \cap (G + H)$.
- 2. A-t-on l'inclusion contraire en général?
- 3. Montrer que:

 $\dim(F+G+H) \leq \dim(F) + \dim(G) + \dim(H) - \dim(F\cap G) - \dim(F\cap H) - \dim(G\cap H) + \dim(F\cap G\cap H).$