Préing 1, MI1, MI3, MEF2 Devoir Surveillé 1

Matière : Algèbre II

L'usage de tout appareil électronique est interdit

Date: mardi 4 mars 2025

Durée: 1h

Nombre de pages : 1

Il sera tenu compte de la qualité de la rédaction et de la précision des justifications. Le sujet comporte 4 exercices. L'ordre dans lequel ceux-ci sont traités n'est pas imposé. Le barème est indicatif.

Exercice 1 (Questions de cours, 4 pts). Soit E un espace vectoriel et soient u_1, \ldots, u_p des vecteurs de E.

- 1. Donner la définition de $Vect(u_1, ..., u_p)$. (2 pts)
- 2. Donner la définition de « (u_1, \ldots, u_p) est une famille génératrice de E ». (1 pt)
- **3.** Application (1 pt) : dans $\mathbb{R}[X]$, déterminer une famille génératrice du sous-espace :

$$F = \left\{ (b+c)X^2 + (a+c)X + (a+b) : (a,b,c) \in \mathbb{R}^3 \right\}.$$

Exercice 2 (6 pts). Soit $\lambda \in \mathbb{R}$ un paramètre, on considère le système linéaire (S_{λ}) ci-dessous :

$$\begin{cases}
-x - 2y + 2z = -1 \\
-2x - 6y + 8z = -4 \\
2x + 3y - (\lambda^2 + 1)z = 2 - \lambda
\end{cases}$$

- 1. Écrire M_{λ} la matrice augmentée du système (S_{λ}) . (1 pt)
- **2.** Échelonner la matrice M_{λ} . (2 pts)
- 3. Donner le rang de M_{λ} en fonction de λ . À quelle condition sur λ le système (S_{λ}) est-il compatible? (1 pt)
- 4. Résoudre le système (S_{λ}) en fonction de λ . On traitera à part le cas où $\operatorname{rg}(M_{\lambda}) < 3$. (2 pts)

Exercice 3 (4 pts). Justifier si les ensembles suivants sont des sous-espaces vectoriels de \mathbb{R}^3 .

- 1. $A = \{(x, y, z) \in \mathbb{R}^3 \mid x y + 3z = 0\}.$
- **2.** $B = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 = z^2\}.$
- 3. $C = \{(x, y, z) \in \mathbb{R}^3 \mid \exists (a, b) \in \mathbb{R}^2, (x, y, z) = (2a b, a + b, 3b) \}.$
- **4.** $D = \{(x, y, z) \in \mathbb{R}^3 \mid x y + 2z = 0 \text{ ou } 2x z = 0\}.$

Exercice 4 (6 pts). Dans $\mathbb{R}[X]$, on considère les polynômes P_1, P_2, P_3 suivants :

$$P_1(X) = X^3 + X + 1$$
, $P_2(X) = X^3 + X^2 + 1$, $P_3(X) = X^3 + X^2 + X$.

- 1. Montrer que (P_1, P_2, P_3) est une famille libre. (2 pts)
- **2.** A-t-on $X^4 X^3 + 1 \in \text{Vect}(P_1, P_2, P_3)$? (1 pt)
- 3. Soient $Q(X) = aX^3 + bX^2 + cX + d \in \mathbb{R}_3[X]$. Déterminer une condition nécessaire et suffisante sur (a,b,c,d) pour que $Q \in \text{Vect}(P_1,P_2,P_3)$. (2 pts)
- 4. En déduire que le polynôme $X^3 + 2X^2 X + 1 \in \text{Vect}(P_1, P_2, P_3)$ et déterminer les scalaires $\lambda_1, \lambda_2, \lambda_3$ tels que :

$$X^{3} + 2X^{2} - X + 1 = \lambda_{1} P_{1}(X) + \lambda_{2} P_{2}(X) + \lambda_{3} P_{3}(X). \tag{1 pt}$$