Préing 1, GC–MI1–MIM1–MIM2–SUPM Devoir Surveillé 1

Matière : Algèbre II

L'usage de tout appareil électronique est interdit

Date: mercredi 6 mars 2024

 $Dur\'ee: \mathbf{1h}$

Nombre de pages : 1

Il sera tenu compte de la qualité de la rédaction et de la précision des justifications. Le sujet comporte 4 exercices. L'ordre dans lequel ceux-ci sont traités n'est pas imposé. Le barème est indicatif.

Exercice 1 (3 pts, questions de cours). Soient G et G' des groupes d'éléments neutres respectifs e et e', et soit $f: G \to G'$ un morphisme de groupe.

- 1. (1 pt) Rappeler la définition de ker f, le noyau de f.
- **2.** (2 pts) Démontrer que ker f est un sous-groupe de G.

Exercice 2 (6 pts). Sur l'ensemble \mathbb{Q}^2 , on définit une loi de composition interne * par :

$$\forall (a,b), (a',b') \in \mathbb{Q}^2, \quad (a,b) * (a',b') = (aa' + 2bb', ab' + a'b).$$

- 1. (1,5 pt) Montrer que * est associative et commutative.
- **2.** (1 pt) Montrer que le magma $(\mathbb{Q}^2, *)$ possède un élément neutre.
- **3.** Dans cette question, on considère $(a,b) \in \mathbb{Q}^2$ tel que $(a,b) \neq (0,0)$.
 - **a.** (1 pt) Calculer (a, b) * (a, -b).
 - **b.** (1 pt) Montrer que $a^2 2b^2$ ne peut pas être nul.
 - c. (0.5 pt) En déduire que (a,b) est symétrisable et donner l'expression de son symétrique.
- **4.** (1 pt) Montrer que pour tous $(a,b), (a',b') \in \mathbb{Q}^2$, on a :

$$(a,b)*(a',b') = (0,0) \implies (a,b) = (0,0) \text{ ou } (a',b') = (0,0).$$

En déduire que * est une loi de composition interne sur $G = \mathbb{Q}^2 \setminus \{(0,0)\}$ et que (G,*) est un groupe.

Exercice 3 (5 pts). Soit $n \in \mathbb{N}^*$. On note $\omega_n = e^{i\frac{2\pi}{n}}$ et on considère l'application :

$$\begin{array}{ccc} f\colon \mathbb{Z} & \longrightarrow & \mathbb{C}^* \\ k & \longmapsto & \omega_n^k \end{array}$$

- **1.** (2 pts) Montrer que f est un morphisme de $(\mathbb{Z}, +)$ dans (\mathbb{C}^*, \times) .
- **2.** (2 pts) Déterminer le noyau et l'image de f.
- 3. (1 pt) En déduire que \mathbb{U}_n , l'ensemble des racines n-ièmes de l'unité, est un sous-groupe de (\mathbb{C}^*,\times) .

Exercice 4 (6 pts). Soit $m \in \mathbb{R}$ un paramètre. On considère le système linéaire d'inconnues x, y, z:

$$\begin{cases} x + y + 2z = 1\\ mx + y + z = 1\\ x + my + z = 2m. \end{cases}$$
 (S_m)

- 1. (1 pt) Écrire la matrice augmentée A_m associée à (S_m) .
- **2.** (2 pts) Appliquer l'algorithme du pivot de Gauss pour échelonner A_m .
- 3. (1 pt) En déduire que le rang de (S_m) est strictement inférieur à 3 si et seulement si m=1 ou m=0.
- **4.** (2 pts) Pour m = 1 et m = 0, dire si le système est compatible et déterminer l'ensemble des solutions le cas échéant.