TD: Séries numériques

Exercice 1. Déterminer la nature des séries suivantes :

n 4
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Exercice 2. En utilisant le critére de d’Alembert, déterminer si les séries suivantes sont convergentes

ou divergentes :
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Exercice 3. On s’intéresse a la série numérique Z ;
n(n+1)
n>1
1. Montrer par récurrence que, pour tout N > 1,
—~ n(n+1) ~ N+1
+00 1
2. En déduire que la série étudiée est convergente, et déterminer la valeur de sa somme Z :
“—~ n(n+1)

Exercice 4. Soit (u,) une suite de réels positifs et v, = —=2—. Montrer que Y u, et » v, sont de

1+‘Un - B
neN neN
meéme nature.

Exercice 5. En utilisant un critére de comparaison, déterminer si les séries suivantes sont convergentes
ou divergentes :
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Exercice 6. Considérons les séries

> @ To(1+57)

n>1 n>1

Montrer que les termes générauz de ces séries sont équivalents mais que les séries n'ont pas la méme
nature.
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Exercice 7. Montrer la convergence et calculer les sommes des séries suivantes :
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Exercice 8. Déterminer des équivalents en +0o de :
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Exercice 9. Ftudier la convergence de la série numérique de terme général :
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Exercice 1. Déterminer la nature des séries suivantes :
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Exercice 2. En utilisant le critére de d’Alembert, déterminer si les séries suivantes sont convergentes

ou divergentes :
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oxercice 3. On s’intéresse a la série numérique E
n>1
1. Montrer par récurrence que, pour tout N > 1,
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Exercice 4. Soit (uy) une suite de réels positifs et v, = 77>~. Montrer que ) u, et ) v, sont de
; neN neN
méme nature.
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Exercice 5. En utilisant un critére de comparaison, déterminer si les séries suivantes sont convergentes
ou divergentes :
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TD2 - INTEGRALES

_ Exercice 1. (%) On considére la fonction :

-1 sixz=0,

1 sil<z <1,
f:[0,4] m R, z+—<(¢3 siz=1,

-2 si1l<z<?2,

4 s12<z<A4.

/0 " ryd.

Ii= |z | dz.

Indication : déterminer une subdivision du segment [0,50] adaptée a la fonction z — |z].

1. Représenter graphiquement la fonction f.
2. Calculer :

Exercice 2. (x) Calculer l'intégrale :

Exercice 3. Calculer l’intégrale :

50
J.= 0 |Vz| dz.

Indication : déterminer une subdivision du segment [0, 50] adaptée a la fonction z — |\/z].

Exercice 4. (x) Trouver une fonction f € %, (R) telle que la fonction :

F:R—-R, a:r—>/ f(t)dt
0

ne soit pas dérivable sur R.

Exercice 5. Soient a,b € R tels que a < b. Soit f € €p,,([a,b]). On considére la fonction :
f+ : [a" b] - R, zw max{f(:v),O}

1. Montrer que fy € € ([a,b])-
2. (a) Montrer que :

b
/ f+(t)dt 2 0.

(b) Montrer que :

[ 1w o)t

Exercice 6. (x) Pour chaque somme, calculer sa limite quand n tend vers +0o si elle existe.

1 T
n e 1+e
1 1 : dz = In :
1. = kZ_-:l T 3 en admettant que /01 - T ( ; )
n 1 1
9 1 V2k en admettant que : / eZ0(2) gy = ——
" & s In(2)

- Indication : utiliser une somme de Riemann en ecrivant la somme sous la forme :

\
\

n

n—1
b—a — b—a i b—a b—a
E f(a+k ) ou sous la forme : = Zf(a+k = )

k=0
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Exercice 7. (x) Calculer les intégrales suivantes :

”

2 .2 8 2 1 5 2

z®—1 -1 1 l-z p

1°/ 5 dz; 2./ vz=1) dx; 3./ dz; 4./ dz. -

0o z°+1 1o Ve 0o V2-—1z? 1 T F

Exercice 8. Déterminer une primitive de chacune des fonctions suivantes & l’aide d’une intégration par parties et préciser E(
son domaine de définition : ;
b

F

fi:z— zin(z) fa:z— T2€® f3 : & —> sin(z)e>? fu: z — z(In(z))>.

Exercice 9. (x) Calculer les intégrales suivantes en effectuant une intégration par parties :

/02(:1: +1)e” dz; /13 z* In(z) dz; /12 vz ln(z) dz; /021|r sin(z)sh(z) d.

Exercice 10. (x) Calculer les integrales suivantes a l’aide d’un changement de variable :
1 s :
z sin(z)
1 -2 dz, 3. / dz
/o \/a:-l-l / Vi-2 o 1+ cos?(z)

z 2
4./ In(1 + tan(z)) dz, 5./ (1 + x2> arctan(z) dz, / z.
1/2

Indications : pour la troisieme integrale, conszdérer @ : T —> T —x, puis reconnaitre la dérivée d’une fonctwn arctan ;
pour la quatrieme intégrale, considérer ¢ : x — T — x ; pour la cinquieme intégrale, considérer ¢ : T — 2 L et utiliser la
relation Yz € R*, arctan(z) + arctan (1) = 3 ; pom’ la sizieme integrale, considérer ¢ : © — cos(2z).

Exercice 11. (%) Soit f € ¥€°([-1,1]).

1. Montrer que si f est impaire, alors :

:
E

2. Montrer que si f est paire, alors :

Exercice 12. Calculer les intégrales suivantes :

1.9 1
/ a:2+ 2$d:c; / 23:1:+1 o
1 z¢+1 0o —Z“+2x+3 '

Exercice 13. (%) Déterminer, en utilisant le critére de Riemann, la nature des intégrales suivantes.

1 1 +00 1
I = / ln:vz dz; I, = / In(z)® dz; I3 = / exp(—z)In(z) dz; Iy = / exp(In®(z)) dz
0 1 +Z 0 0 0

Exercice 14. (%) Déterminer, en utilisant les équivalents de fonctions, la nature des intégrales suivantes. |

100 1
J1 =/ : \/1 s d:B; Jz = tan(m) dx.
0 T o arcsin(z) —z

Exercice 15. Soient a < 8 deuz réels. Etudier la nature de l'intégrale suivante :

B T
=/a \/(w—i)w—

Déterminer ensuite la valeur de cette intégrale. On pourra utiliser le changement de variable u = et

Exercice 16. (x) Aprés avoir montré que les intégrales suivantes convergent, déterminer leur valeur par intégration par
parties.

o B 1\ 1
I = / t2e tdt; I, = / arctan (—) —Edt.
0 1 U/t




~ Exercice 1. (x) On considére la fonction :

(-1 siz=0,
sil<z <1,
f:[0,] m R, z+—(3 siz=1,
-2 s1l<x<2,
4 s12<z<4.

\

I. Représenter graphiquement la fonction f.
2. Calculer :
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Exercice 4. (x) Trouver une fonction f € €, (R) telle que la fonction :
I
F:R =R, 3:»—>/ f(t) dt
0

ne soit pas dérivable sur R.
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Exercice 6. .(x) Pour chaque somme, calculer sa limite quand n tend vers +0o si elle existe.

1
L e’ 1+e¢
1. L' —— en admettant que : / dz = In i) ¥
m =1 l4en ol 4+ € 2
: 1

2. 257 Y2k en admettant que / e*10(2) gy = :
k=1 0 ln(2)

Indication : utiliser une somme de Riemann en ecrivant la somme sous la forme :

N n b—L & n—1 S
: a2f<a+k a) ou sous la forme : bnaZf(a-f-kb a).
n
k=1

T n
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Exercice 9. (x) Calculer les intégrales suivantes en effectuant une intégration par parties :

2 3 2 27
/ (x + 1)e® dx; / z? In(z) dz; / vz In(z) dz; / sin(z)sh(z) d.
0 1 1 0

A ] e &




X D Lo
8 [Q?ﬂ -3 ((')\
X = QB\
/)Mc 9'!/[ = 0&'

figa

1T
2
j Ak a /)L\ h/?'l {'DC\ :ﬁllﬂ g[x) /(‘I = C?‘\A 8@ g j fl&\?dﬂ&
0 | |
= [t((?) (Db\ /Y&L)D\-\@ [{‘cbh’-\ %Lét( dxc

i )
I —
g ot TP




4«352‘ =
F&AW f ‘JCQ/M[ZL)
= £ . “H
/W“@MQ o =~4 2
i: 4 / 'C: %
(9./1,\ s /)C = % ({/(
( gt -
f 0)7/1_:7/&& :J 1\54 gé,\q’/'( Con (6’( (}/(\ <
R
il T,
g C ¥ 44

JQ&) cov df



T
iatE: (e i (B) (- 1)
0 /l-F [cn,ol [%[.\c\\




s

11

1l




A
/(_ g . //(.r jz—} onclom =\ dx

i
Voadidtor | kil (x> L 4

/J(Mff A =2 o L. 4

Z

f e CU’V‘LL\MAA NN LF[L/%_,Z]; Cﬁzlﬂ

e £1(C4 7)) Deps Lo Pormde
e c/@LM de. Uorco

[ W%\I \ & e s
x| = = / f{,)) v PN d=
B i o

/g

Acfm/ﬁ', T’S" /A-r- ;‘[/962) DJIDI‘CW(?/DC” X gp/(x\ U
z

A
> eV ahon () x - e
1

L
- f (17 wnckon () 5 Lyl
i

fm MOI‘CM'& (&)sﬁ"— aﬂ&}urnlx—\ /ajw/;

Z

1s - f Q(/[‘e x*) (jg" one hon (xS\X%(
1

L 2
= ” [4“ %’-\%‘L‘ 1 / (/H- :—:«.\ OJ\JEM [z\d{-l/

= TLTs




Exercice 11. (%) Soit f € ¥€°([-1,1)).

1. Montrer que si f est impaire, alors :

/ 11 F(#)dt = 0.

/_ 11 F(£)dt = 2 /0 " Fode

) 0“ i j (6) df = /1/—6) df
g e ol

Lo f(-H . -—f/f]
{

Cn (lemaa € por € law j,’-f[—l-loﬂ
At —-j1 [-€) At = - Z ¥
e e

B j"{/we

2. Montrer que si f est paire, alors :
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Exercice 14. (x) Déterminer, en utiisant les equivalents de Jonctions, la nature des niegrales suwantes.

5 sy ¢ BT 1
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0
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TD3 - ALGEBRE BILINEAIRE
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Formes bilinéaires
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Exercice 1 (Forme bilinéaire antisymétrique)
Soit ¢ la forme sur R? x R? définie pour tout z = (z;,2,) € R? et y = (y1,42) € R? par :

P(T,y) = T1Y2 ~ Tay
1) Montrer que ¢ est anti-symétrique. ¢ est-elle symétrique ?

2) Montrer que ¢ est bilinéaire.

Exercice 2 (Forme de LORENTZ)
Soit ¢ > 0 un paramétre réel et ¢ : R* x R* — R définie pour tout z = (z1,z9,23,74) € R* et y =

(y1~y2,y3.y4) c R¢ par :
o(x,y) = 191 + T2y2 + T3Yy3 — 02334?/4

1) Montrer que ¢ est une forme bilinéaire symétrique sur R*.
2) ¢ est-elle positive 7 définie ?

3) On note B = (e}, ez, €3, €4) la base canonique de R*. Donner la matrice de ¢ dans B.

Exercice 3
Déterminer la forme bilinéaire ¢ sur R® de matrice A dans la base canonique de R?.

1523
A=12.:314
3 4 5

Exercice 4 (Matrice d’une forme bilinéaire)
Considérons la forme bilinéaire sur R? : Vz = (z1,%2),y = (y1,2) € R?

i
|
!
:
;
i
:
|
:
¢
:
%
E
]
5
!
@
!
i
:
%
:
g

90(33, y) = 8z1y1 + 7Z1Y2 + 7x2y; + 10z92y-

(1) Déterminer la forme quadratique associé a o, 1.e. :

q(z) = p(z,z) Vz € R’

1) Déterminer la matrice de ¢ dans la base canonique B de R?%. ¢ est-elle symétrique ?

2) Soit B’ = (vy,v2) avec vy = (3,—2) et v, = (—1,1).
Déterminer la matrice de ¢ dans la base B’. Donner I'expression de ¢ par rapport a B'.

LA OB Sy 2P PR B RSER S T € @S VR wP P AP

B cr @ TY AP GPIITN, L PTG G P PGV TP W s - A

Espaces euclidiens

Exercice 5
Pour tout z = (z1,Z2,z3) € R3 et y = (y1,¥2,¥3) € R®, on pose :

o(z,y) = (1 — 222)(y1 — 2y2) + T2y2 + (T2 + T3) (Y2 + ¥3)

Montrer que ¢ est un produit scalaire sur R®.




Exercice 6
Montrer que Uapplication ¢ suivante est un produit sealaire sur Riz|

|
P(FQ) / P(zx)Q(z) de VYP,Q ¢ R[z]
JO

Exercice 7
Soit K o= (‘({ 1, ]‘ R). Pour tout f,_q e F.oon pose

!
¢(f9) = / f(t)a(t)(1 — t*)dt
J <1
Montrer que ¢ définit un produit scalaire sur £.

Exercice 8
Soit F = 71([0. 1], R). Pour tout f,9 € E, on pose

|
¢o(f.9) = f(0)g(0) 1/0 f'()g'(t)dt

Montrer que ¢ est un produit scalaire sur F.

Exercice 9 (Norme euclidienne)
Sur R2, on définit les fonctions suivantes

1zl[y = |z1]| + |z2| 5 |z]l2 = \/2? + 22 Vz = (z1,2;) € R?

1) a) Vérifier que ||.|[; est une norme sur R2.
b) Montrer que ||.|[; n’est pas une norme euclidienne.

2) a) Vérifier que ||.||2 est une norme sur R2.

Indication : Pour z,y € R? fixés, étudier le discriminant de la fonction polynomiale de degré 2
définie pour tout ¢ € R par

| ft) =z +ty|3, Vt€R

b) Montrer que ||.||2 est une norme euclidienne et déterminer le produit scalaire associé.
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Exercice 10 (Orthogonalité)
M32(R) est muni de son produit scalaire usuel :

(A,B) =tr(ATB); VA,B e M;3(R)

. 151 -1 0
SmtA—(l 1)etB—-(O 1)

1) Montrer que A L B.

D it e —— -

—— e A A . T

2) Déterminer le s.e.v. {A}+ et donner sa dimension.

Endomorphismes remarquables d’un espace euclidien

Exercice 11
Soit (E, {,)) un espace vectoriel euclidien de dimension 3 muni d'une base orthonormée B = (ey, 2, e3). Soit

p € L(F) déterminé par :

| 0 =2yl
MatB(p) = 6 —2 g 2
1 O

Montrer que p est un projecteur orthogonal sur un plan dont on précisera une équation.




- i — e — e . Gy >y

Exercice 12
Sait (£, (,)) uh sepace vectoriel suclidien de dimension 3 muni d'une base orthonormée B = (¢;,¢5,¢3). Soit

$ € C(F) déterming par

! - S
Matp(s) = 2 g wgo)
i b SR B

Montrer que & est nne symétrie orthogonale par rapport A un sous-espace F' que I'on déterminera. Déterminer
la matrice de la symétrie orthogonale par rapport & F'* et un systéme d'équation(s) de F .t

Exercice 13
Soit (E, (,)) un espace euclidien. On appelle isométrie de E toute application g: B — E qui vérifie :

V(z,y) € E?, |lg(z) - 9(v)]l = [z - vl

1. Soit I'application f : E — E donnée par
f(z) = g(z) - 9(0)
Montrer que pour tout (z,y) € E?, (f(z), f(¥)) = (z,v).
2. En déduire que f € O(FE).

3. En déduire que toute isométrie de E s’écrit comme la composée d'une translation et d'un automor-
phisme orthogonal.
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Exercice 1 (F

orme bilinéaire antisymétrique)

e |

™ 2

Soit ¢ la forme sur R* x R* définie pour tout z = (z,,x3) € R* et y

1) Montrer que ¢ est anti-symétrique. ¢ est-elle symétrique

?(’ ?/\ L1y LY

)

2) Montrer que ¢ est bilinéaire.
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/VM con eﬂt ok omhC "4??“
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pa  f(=g) = Op:

Ad
AV
(({1/3‘3 - Plgz"'\ &> ‘lofac,:’) + Wylﬂ =0
4 2 Plcg) =0

&> Pl=a = O

Y o biluwoin.

' (.?/t-,l/.z) e R“ par :

@M? ({ o Livtshe. pon 4 P OAW'
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Exercice 2 (Forme de LORENTZ)
" , A 4 rt
Soit ¢ > 0 un paramétre réel et ¢ : R* x R* — R définie pour tout z = (z1,29,23,24) € R" €L Y =

(V1,¥2,¥3,V4) € R4 par :
2y
(T Y) = T1 + TaYs + Tays — C“T4Y4

1) Montrer que ¢ est une forme bilinéaire symétrique sur R*.
2) @ est-elle positive 7 définie 7

3) On note B = (e}, ez, e3,€4) la base canonique de R*. Donner la matrice de ¢ dans B.
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Exercice 5
Pour tout z = (z1,Z2,23) € R3 et y = (y1,2,¥3) € R, on pose :

p(z,y) = (z1 — 222)(y1 — 2y2) + T2y2 + (T2 + 23) (Y2 + Y3)

Montrer que @ est un produit scalaire sur RS,

C)p /;/&\ - &:, -chz )/34- Zaz\ + Jﬁaaz 4/)&2%13\/87,-#(73\

My 9 ob Wloisie, sqmitipa, Plzsd 30, tholll Phstz oo =2 0

@ UE//\;?C@M fs- 4«11/1;\3»«"«1 (fam\-. [5,, Z‘Jt\ {%4’2”1\ +319ﬂz ¢ /‘41“33”14»1‘ ?3)
~ /7‘/'2“—'1«\ [‘u/\ ’z?x\+ 94)_(0'-1_1‘/;::&+x)]£v.,_463\

6 Ve oI, Plow) = fer2x) +2 4 (en) 20

9

@ VQD R C(/a‘/%) = 0 ¢ (957 'QZL\L+’CZZ_ f [a:z_«/%a\
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Montres que déhnit un produit scalaire sur /
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Exercice 10 (Orthogonalité)

M5 (R) est muni de son produit scalaire usuel :

(A,B) =tr(ATB) ;

Sy 6 k3 i =150
SonA—(l 1>etB—(O 1)

1) Montrer que A L B.

VA, B € M3(R)

2) Déterminer le s.e.v. {A}* et donner sa dimension.

A A= (A4

Mg A

N A
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VA,BQMZ [R)

o4\ [T &
" a a o 1
SVERYA
piEs BT 1
1 )
-1 1




bae ck
‘o b now
Lo nawy rg Jek &

Vel Latwroal  induduky  on

lAA ) L,elgla ‘Zag
/4"4 A



Endomorphismes remarquables d’un espace euclidien

Exercice 11
Soit (E, (,)) un espace vectoriel euclidien de dimension 3 muni d’'une base orthonormée B = (e, €2, e3). Soit

p € L(F) déterminé par :
| o =2 1
MatB(p) LS Bl Bl N,
G109 0

Montrer que p est un projecteur orthogonal sur un plan dont on précisera une équation.

% /94,42,@3) l)(a/l—f— (co/ww‘?u,o_ N €
IMI’ f)é %(E) djp‘w!& /90—. :

-2,4‘

(}40\' (P\= {1/ -2 2. )
P 6\42,5/

{Sﬂ /M%\V do n‘(ﬁ :
J’t&g’P) J/\o" IP\ MO\_ (9\
LMD\’; [p) = Mot (p)
J_ /Ulal';—/lo\: //(aFSJP)

ZM /b{acl'ﬁl(P) - /H,pl-a (’)\ &’4"4 PM m ly/zca.et"M m‘-l’t’aa«dﬂ
Pm:afso« J Zqﬂ-o Foon Ade p

% o paroy atlion dovy Lo véu‘,ﬁ'c
P4 P
P=F@F*

(u,‘b”) —_—d

Cd eulm, oy es) € R7 . On rizak
/ug(’vlp) x = 2x &ED /’to’b{p)a—x =0
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Exercice 13 .
Soit (E, (,)) un espace euclidien. On appelle isométrie de E toute application ¢ : £ — E qui vérifie :

¥(z,y) € E?, |lg(z) - g(v)|| = [z - vl
1. Soit I'application f : £ — E donnée par
f(z) = g(z) - 9(0)
Montrer que pour tout (z,y) € E?, (f(z), f(v)) = (z,y).
2. En déduire que f € O(FE).

3. En déduire que toute isométrie de E s’écrit comme la composée d’'une translation et d'un automor-
phisme orthogonal.
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