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1) . Y (x
, y) = x yz- zye

=

- ye xz + yex = - P(y ,)

Dona 9 est Antisymétrique
· 4 est symétrique ?

Nan car elle et ontisymatique
can Y(

,y) = -y(y ,x
Elle est symétrique Y (x,y) = &Ra

#
Yby) = - P(yp) (Dy( ,y) + y(y ,x) =0

N 2 Y(,y) = 0

-=D ((x,y) =
0
,
2

2) My Y et bilinioins .

1 Mo Y at lincère por
lo premie orgument.

Posane Fac ,x,y eRet +c IR
↑(x + 1x

,y) = y( , y) + 14y)
= x1y2 + f(xiyz) - x2y + 1(x24
= x

, Ye - (-y + 1(x742 -xy

② Ex
,y, y c IR"

ofEl

-

& Mo
, 4 et bilinices

sym un IR"

(x = p ety=) 124

EVIDEMENT elle at Sym

BLABLA ....



2) Fx EIRY (2 + O
,

Y ( ,>) >0 ?
Y

Sait x = (xn, 2, 3 ,x4) Over 2 = 0 ,p 4

On a = 4 (x ,x) = x + x2 +x - cx)0 ?

Pour
x = 10. 0. 0. 1) = -co

Danc & n'est par positive définite

( , 1, 1 , 1) 3 .230

3) On note & = /21
, 22 , es , en) la bone comonique do IRY

Donne to motrice 4 dom B
Suit A la motrio de 4 dans

1 S O enA (y/e , ey) 1 = :, 2 = 4 = I 0 18 8. I ezCes08o
-

8 O 24

Je , 2,14/0 , 22. Yen ,est 4(en , ex)
(c ,2) Plez ,fa Ylez

, est 4(02
, 04)l les , est Yleg , es Y(e3 , es) 3) es , e4) I

lencul Ylenen) Glences 4 (ey , en

Ecianos
A- 1s

Déterium Do Pome biliniore Y ser IR de A dom

la bare comonique de IRS

Suit a IR"
, yeIR 3. 4

IRXR' - > IR

(
,y

On a y(, y) = x
+ 14

overx =(2) et 1 = 12

4 (,y) =(x .x,1/ )
y 1 + 2yz + Sys

= (x - 1x2 , 33) ( 2y
,

+342 + 443I3y , + 4yz + 3ys

= x , (y , + 2yz + 3yz) + x-(2y + 3yz + 4y)
+ xy(3y 1

+ 4yz + 3y3)

& et symétrique can AT = A



Exercis no
4

fx = (xn ,x)z(2
, y

= (y ,, 42)t1Rz

7: IR2xIR" -> IR
102
,y)> (x , y , + 7x , 42 + 70241 + 180242

1) Doteminons lo form quadratique associe gie( = 11 : EIR

fx IR"
, ok = Y ( = Sa

,
+7 x

, 22 +7 ex+ 10x2
= Sa2

,

2
+ 140, + 10x,

2) Déterium So motim I Pom Por bos comonour Bo de /R

Soit Alo motisa de 4 don to barn BMIR

On a B = e
, e aus

e
,
1
,
0) eclo,1

A =

57

I710 I
AT = A



& ky) = (c . - 2x2)(yn - 2yz) + x,yz + (2+x3)/yz +yz)

Ma 4 est bilinéaire, symétrique, Placed -0
,
FieR, Ad = 00x : De

1 verifion to symetric Ylyx = (ye
- Lyc)(2 - (xx) + y2x2 + /yz +yz)(xn + x))

= (202)(yn -2yz) + xyz+/xz +x, )(yz + y))
= Y(x

,y)

2 bilinéaire : comme c'est symétrique, il suffit de montrer ga
Test linica ser 1 seel orgument.

fe, iy CIR 3, FEIR
,
y( + +x

, y) = y(0
,y) + +yay)

3 Vo CIR
,

Ybx = (2)"+xn + 1x +x 70

↳ FerER3, Ybp = 0 ED (sy-2xl + x2 + (+x))2

LED 22. - 2x2 = 0
,
x=

0
, Catay

=
0

iD dans 221 = 0

x =
0

=Dx
= OIR3

ag O



①, suie : y(P. Q) = S
.

PQbaden
= JQba Pla da =YQ

⑳to #P
,
P, Q -IR(x]

Y (P + P
,

a) = ((P++P)Qdx = ((PQ)+Apa

③ TP, P) = J/ p> 30 c PeRE = SoPa Qu +1 PQ

# &(P, P) = 0 =+(plc = 0 = P=O,Re
,
Exc(0

,1]

ED PEO con an polynôme
qui soumull sur
l'instruelle erf bi

pelyncome nah

Dan I posait scoline

Soit E = 2 /(1 ; 13) et 4 (f ,y) = (, g(/1 - 14dt .

Ma Y est un produit scolvio sur E

② symétrie évidente-

②( + <(ii) . 4 (8: 2) = 0 E ((1-2)d+ = 0

El j2(((1 -=7 =0ft - (1,

ED(t =j - 1 / 19 , 1 - t 330 et2/ = 0
EDF E -J - 1 , 1 [

, 1-10 of g(t) = 0
4=D f = 0 por continuité do floussin en 11)

Ainsi 4 est produit scolaire ven 2/11))



1) A = (1) e B = to -i)

Mp ALB

St suffit de monten (A
,
B) = 0

VA , Be Mz(IR)

oun ATB = 1)19)I

= (
On a An/A + B) = to (2) =

-+ + 1 = 0

Dans (A
,B) = 0 ED ALB

2) On At= SXeMaR) /Aix) =02
& -

Sait X = (0) .
Colle [AX) = 0

(A, X) = tn(A
+

X) = 0

=a + b + c + d = 0

At en l'ensemble de motrices de MzCR) dont le somme des

coef



cad At = SX McLIR) /a + b+d =02
& f

Dotemina es dim de At

On a Mc (IRI = At Ve/A)

Dans dien M 2 SIR) = die
At + dim

Vet/A)

4
= dimA

+

+ rg/A)
= dim A + = 4 - 29/Al

Le roug 28et c'est le nombre d

vecteu linicient independant on b

Ah = ) Le/%8



TD : nomaphisme

B = 10
,
22
,
es) bas canonique de E

Soit paXIE) définie po :

3- 21

Mot (p) = 1 -22 L
B

12S

Il suffit de ma :

Motz/p) .Motpl = Motolp

#
Mot(p) = Motis(p)

et Mot p = Motop

Comme Mate(p) = Motgly olon peut un projections orthogonal

Précison & équation de p

La projection p dans le plan verific

p
: FoF

+

F
In
,
2) >e

Seit = (e,,, g) EIR". On risant

Motp/p)2=D Motylp)- = 0

1
(= x , =xz - 2x)

4=bx , +2x) - xz = 0



T

f

Il suffit de mai

· Motp(1) = Motel levident

· Mot18) = In limmolation

= (0%
Détermina F

Pour déterminer F, an isaut

Sf(x) =x , fxIRs

#
Motp1f(x=
#

A
F =((,,3, xz) = (R(2x , -x -

x, =0 = Vect(2, -7,-T)
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