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1 Séries numériques

1.1 Généralités et définitions fondamentales

Définition. Soit (u,) une suite a valeurs dans R ou dans C. La série numérique de

terme général u, est la somme formelle :
Ug + U + Uy + ...

que ’on note :
+oo
E Up.
n=0
Si la suite commence & l'indice ng, on écrit :

—+00
E Up.

n=no

Exemple.

+0o0
u1+u2+zg 'U/n'
n=1

Définition (Sommes partielles). Pour tout N € N, la somme partielle d’ordre N
est :

N
SN:ZUHIUQ—i‘Ul—i‘"'—FUN.

n=0

La suite (Sy) est appelée suite des sommes partielles de la série ) u,,.

Exemple.
+00
— Pour Z —, il est difficile de calculer toutes les sommes partielles. Par exemple :
n
n=1
1 1 1 1
Ss==+s+=1+-+—
TpETETET Ty
+0o0o
— Pour Z 2" il s’agit d’'une série géométrique de raison ¢ = 2, donc :
n=0
2N+1

S — 2n _2N+1_1‘
N Z T1_9
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Définition (Convergence et divergence). La série Y u, est dite convergente si la

suite de ses sommes partielles (Sy) converge. Dans ce cas, on définit :

+oo
lim Sy = E Uy,
N—+o0
n=0
Sinon, la série est dite divergente.

+o0
Exemple. Pour Z 2" ona Sy = 2V —1 et limy_ 4o Sy = 400, donc la série diverge.
n=0

Définition (Reste d’une série convergente). Si ) wu, converge vers S, on définit

pour tout N :
“+oo

RN:S—SN: Z Uy,

n=N-+1

1.2 Structure algébrique

Soient Y u, et Y v, deux séries numériques et A € R.
— Addition : ) "(uy, +v,).
— Multiplication par un scalaire : /\Zun = Z(Aun)

— Produit de Cauchy : (Z un) (Z vn> = an ol w, = ZZ:O UpUp—k-

Remarque. Si les séries Y u, et > v, convergent :
1. > (uy + v,) converge;
2. > (Auy,) converge;

3. Si au moins une des deux converge absolument, alors »  w, converge.

1.3 Condition nécessaire de convergence

Théoréme. Si E u, converge, alors lim,,_, ., u, = 0.

Corollaire. Si lim wu, # 0, alors la série diverge (divergence grossiere). La réciproque
n—-+00

est fausse : u,, — 0 n’implique pas la convergence de > u,,.
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1.4 Séries de référence
+oo
Série géométrique. Soit ¢ € R. La série Z q":

n=0
converge si |q] < 1,
diverge si |q| > 1.
+o00
- . . L. 1
Série de Riemann. Soit v € R. La série Z —
ny
n=1
converge si y > 1,
diverge si v < 1.

1.5 Séries a termes positifs

Définition. Une série Z u, est positive si u, > 0 pour tout n.

Propriété. Pour une série positive, la suite (Sy) est croissante. Elle converge si et

seulement si elle est majorée.

Critéres de convergence

Critére d’Alembert. Soit ) | u, une série a termes positifs et [ = lim,,_, o “**=*. Alors :

[ <1 = la série converge,
[ > 1 = la série diverge,

[ = 1 = pas de conclusion.
Critére de Cauchy. Soit ) u, une série a termes positifs et [ = lim,,_, ;o /u,. Alors :

[ <1 = la série converge,
[ > 1 = la série diverge,

[ =1 = pas de conclusion.

Critéres de comparaison
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Suites équivalentes. Deux suites (u,) et (v,) non nulles a partir d’'un certain rang

sont dites équivalentes, noté u, ~ v,, si :

Equivalences utiles. Si lim,, . u, = 0, alors :
sin(uy,) ~ U, cos(u,) ~1, In(l+wu,)~u,, e ~1.
Tout polyndéme en n est équivalent a son monoéme de plus haut degré.
Comparaison par inégalité. Si 0 < wu, < v, a partir d'un certain rang :
Z v, converge =- Z u, converge,
Z u, diverge = Z v, diverge.

Comparaison par équivalence. Si u, ~ v,, alors les séries > wu, et > v, sont de

méme nature (convergentes ou divergentes).

1.6 Séries alternées

Définition. Une série de la forme Z(—l)”un ou Y (=1)""u,, avec u, > 0, est appelée

série alternée.

Critére de Leibniz. Si (u,) est décroissante et lim,,, o u,, = 0, alors la série Z(—l)”un

converge.
+oo _1)n

Exemple. La série harmonique alternée E converge par le critére de Leibniz.
n=1

1.7 Séries & termes quelconques

Convergence absolue et semi-convergence

Définition. La série ) u, est absolument convergente si »_ |u,| converge. Toute

série absolument convergente est convergente.

= (1)
Exemple. Z—

n=1
semi-convergente.

converge (critére de Leibniz) mais >, %] L diverge, donc elle est

Sam P. 6



Critéres usuels de convergence absolue

Un+1
Unp,

Critére d’Alembert (valeurs absolues). Si lirf
n—-—+o0

= [, alors :

[ <1 = convergence absolue,
[ > 1 = divergence grossiére,

[ =1 = pas de conclusion.

Critére de Cauchy (valeurs absolues). Si hIE V |un| =1, alors :
n—-+0oo

[ < 1 = convergence absolue,
[ > 1 = divergence grossiére,

[ =1 = pas de conclusion.
Théorémes spécifiques
Théoréme spécial des séries alternées (TSSA). Si (Ju,|) est décroissante et tend
vers 0, alors Y u, converge.
+oo

Série de Riemann alternée. La série E

n=1

n
S — converge si et seulement si A > 0.

Série de Bertrand. Pour o, € R :

+o0 1

) | a>1, pour tout 5,
Z ———— converge si et seulement si
n*(lnn)?

- oua=1et [ >1.

Sommes télescopiques. Si v, = uy11 — Uy, alors :

E v, converge < (u,) converge,

et
—+o0
5 vy, = lim (u, — up).
n——+oo
n=0

2 Intégrales

Dans tout ce chapitre, on fixe deux réels a,b € R tels que a < b.
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2.1 Fonctions en escalier et intégrale

Définition (Subdivision). Soit n € N*. On appelle subdivision du segment [a, b]

toute famille ordonnée

O':<£C0,£L'1,...,.Z'n)

telle que

a=xp<xT1 < <x,=0.

On note S(a, b) 'ensemble des subdivisions de [a, b].
Exemple. La famille (0,1,1) est une subdivision du segment [0, 1].

Définition (Subdivision réguliére). On appelle subdivision réguliére de rang n

du segment [a, b] la subdivision définie par

b—a

n

rr=a+k k=0,...,n.

Définition (Fonction en escalier). Une fonction ¢ : [a,b] — R est dite en escalier

sl existe une subdivision o = (zg, ..., x,) de [a,b] et des réels cy, ..., c,_1 tels que
Vk € {0,...,n—1}, Vx€lrg, xpnl], o(x) = c.
On note &([a, b]) I'ensemble des fonctions en escalier sur [a, b].

Définition (Intégrale d’une fonction en escalier). Soit ¢ € £([a, b]) associée & une

subdivision o = (xg, ..., z,). On appelle intégrale de ¢ sur [a,b] la quantité
b n—1
/ Z Ck fEkz+1 - l‘k
@ k=0

Propriétés fondamentales. Soient ¢, 1) € E([a,b]) et A € R.
b b b
— / p+y) = / P+ / ¥
NASUE

— Sip >0, alors/ >0

Relation de Chasles. Pour tout ¢ € [a, ] :

/abgo(a:) dx = /acgo(a:) dx + /Cbgo(a:) dx.
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2.2 Fonctions continues par morceaux

Définition. Une fonction f : [a,b] — R est dite continue par morceaux s’il existe
une subdivision o = (zg, ..., z,) telle que :

— f est continue sur chaque intervalle |z, 511/,

— f admet des limites réelles a droite et a gauche en chaque x.

On note Cy,,,([a,b]) I'ensemble des fonctions continues par morceaux sur [a, b].

Remarques.

— Toute fonction continue est continue par morceaux :
C°([a, b)) C Cgm([a,b]).
— Toute fonction en escalier est continue par morceaux :
E([a,b]) C Cgm([a,b]).
Intégrabilité. Toute fonction f € Cp,,([a,b]) est intégrable sur [a, b].

Positivité. Si f € Cp,([a,b]) et f(z) > 0 sur [a,b], alors

b
/ f(z)dx > 0.
a
La réciproque est fausse.

Inégalité de Cauchy—Schwarz. Pour toutes fonctions f,g € Cp, ([a,b]) :

< ( / bf(:v>2dm) " ( / bg<x>2dx)

Nullité de l’intégrale. Si f est continue, positive sur [a, b] et

[ rwar=o

1/2

[ e as

alors f est identiquement nulle.

2.3 Sommes de Riemann

Proposition. Soit f € C),,([a,b]). Alors :

. b—ag b—a b
ngrfoo - ;f<a+k - )—/af(x)dx
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2.4 Primitives et intégrale définie

Définition (Primitive). Soit I un intervalle de R et f: I — R continue. Une fonction

F : I — R est une primitive de f si
F'(z) = f(z), Vzel.
Théoréme. Toute fonction continue sur un intervalle admet des primitives.

Définition (Intégrale définie). Si f est continue sur [a,b] et F' une primitive de f,

on définit

b
/ f(z)dx = F(b) — F(a).
Théoréme fondamental de ’analyse. Si f est continue sur [a, ] et
Fla)= [ 10

alors F est une primitive de f sur [a, b].

2.5 Meéthodes de calcul

Intégration par parties

Proposition. Si f,g € C'([a,b]), alors :

b b
| 1@ ds = g - [ s i
Changement de variable

Proposition. Soit ¢ € C!([a, b]) strictement monotone et f continue sur ([a, b]). Alors :

o (b) b
w) du = ) (z) dx.
L g / F(e(@)¢ ()

2.6 Intégrales généralisées

Définition. Une intégrale est dite généralisée si :
— l'intervalle est infini;

— ou la fonction n’est pas bornée.

Convergence. Une intégrale généralisée converge si la limite définissant l'intégrale

existe et est finie.
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Convergence absolue. Si

[ 1wl
/abf(x) dx

converge, alors

converge.

2.7 Intégrales usuelles

Intégrales de Riemann. Soit a € R:

1 1 —+o0
/ —dx converge ssi o < 1, / —dx converge ssi o > 1.
o & 1 T

Exponentielle.

+00
/ e **dx converge ssi a > 0.
0

Critére de comparaison. Soient f, g continues, positives sur [a, b[, avec f < g.
— Si [ g converge, alors [ f converge.

— Si [ f diverge, alors [ g diverge.
Théoréme d’équivalence. Si f(x) ~ g(z) au voisinage d'un point singulier, alors

/ f et / g sont de méme nature.

3 Formes bilinéaires, espaces euclidiens et endomor-

phismes remarquables

Dans tout ce chapitre, E désigne un espace vectoriel réel de dimension finie n.

3.1 Formes bilinéaires

Définition. Une application
p: ExE—R

est appelée forme bilinéaire si elle est linéaire par rapport a chacune de ses variables,

c’est-a-dire :

el +y,2) =z, 2) + ¢y, 2),
oAz, z) = Ap(z, 2),

Ve,y,z € B, VA € R,
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et de méme pour la seconde variable.

Exemples.
— Dans R", Papplication (x,y) — 2"y est une forme bilinéaire.
— L’application (x,y) +— 0 est une forme bilinéaire.

— L’application (z,y) — ||z|| |ly|| n’est pas bilinéaire.
Définition (Forme symétrique). Une forme bilinéaire ¢ est dite symétrique si :
Vo,y e B, o(z,y) = oy, ).

Définition (Forme antisymétrique). Une forme bilinéaire ¢ est dite antisymé-
trique si :

Vr,y € B, o(x,y) = —p(y, ).
Propriété. Si ¢ est antisymétrique, alors :
Vee B, o(z,z)=0.
Réciproque. La réciproque est fausse en général.

3.2 Matrice associée a une forme bilinéaire

Définition. Soit B = (ey,...,e,) une base de E et ¢ une forme bilinéaire. On appelle

matrice associée a ¢ dans la base B la matrice

Mp(p) = (ap(ei, ej)) 1<i,j<n’

Expression matricielle. Si x,y € E ont pour coordonnées X,Y € R" dans la base B,
alors :
p(z,y) = X Mp(p)Y.

Changement de base. Si P est la matrice de passage d’une base B & une base 5,

alors :

My () = P Mg(p)P.
Symeétrie matricielle.

 est symétrique <= Mgp(p)" = Mz(p).
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3.3 Formes quadratiques

Définition. Une application ¢ : £ — R est appelée forme quadratique s’il existe une

forme bilinéaire symétrique ¢ telle que :
Ve e B, q(z) = ¢(z, ).

Remarque fondamentale. Une forme quadratique ne détermine pas une unique forme

bilinéaire, mais elle détermine une unique forme bilinéaire symétrique associée.
Polarisation. La forme bilinéaire symétrique associée a ¢ est donnée par :

(az +y) — q(z) — q(y)).

DN | —

p(z,y) =
Expression matricielle. Dans une base B :
g(r) = XTAX,
ol A est une matrice symétrique réelle.

Exemple. Dans R? :

11
q(z,y) = 2* + 22y + 3y = Az(l 3).

3.4 Positivité des formes quadratiques

Définition. Une forme quadratique q est dite :
— positive si Vz, ¢(x) >0,
— définie positive si Vo # 0, g(z) > 0,
— négative si Vz, ¢(z) <0,

— indéfinie sinon.

Lien matriciel. ¢ est définie positive si et seulement si sa matrice associée est symé-

trique définie positive.

Critére de Sylvester. Une matrice symétrique réelle est définie positive si et seulement

si tous ses mineurs principaux sont strictement positifs.
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3.5 Diagonalisation des formes quadratiques
Théoréme (Réduction de Gauss). Toute forme quadratique réelle peut étre mise
sous forme diagonale dans une base convenable :

q(z) = )\11’% 4+ 4 )\nxi.

Signature. Le nombre de coefficients strictement positifs et strictement négatifs est

invariant par changement de base.

Théoréme d’inertie de Sylvester. La signature (p,q) d’une forme quadratique réelle

est indépendante de la base choisie.

Cas particulier. Une forme quadratique est définie positive si et seulement si tous les

coefficients diagonaux sont strictement positifs.

3.6 Applications géométriques

Classification des coniques. Les formes quadratiques permettent de classifier les co-
niques selon leur signature :

— ellipse,

— hyperbole,

— parabole (cas dégénéré).

Exemple.

2+ =1 ellipse, > —y* =1 hyperbole.

3.7 Produit scalaire

Définition. Un produit scalaire sur E est une forme bilinéaire symétrique (-,-) :
E x E — R telle que :

— VYx e E, (z,z) >0,

— (r,2) =0 <= z=0.

Exemples.
— Dans R™ :

=1

— Pour une matrice symétrique définie positive A :

(r,y)a =z Ay.
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Norme associée. On définit :
z]| = v/ {z, z).

3.8 Inégalités fondamentales

Inégalité de Cauchy—Schwarz. Pour tous z,y € E :
[{z, )| <l lyll-
Démonstration. Considérer la fonction ¢ — (x + ty, x + ty) et utiliser sa positivité.

Inégalité triangulaire.
[z +yll < llzll + lyll-

Distance. La distance associée est :
d(z,y) = ||z —yl.

3.9 Espaces euclidiens

Définition. Un espace vectoriel réel de dimension finie muni d’un produit scalaire est

appelé espace euclidien.
Orthogonalité. Deux vecteurs x,y sont orthogonaux si :
(z,y) =0.
Orthogonal d’un sous-espace. Pour un sous-espace F' C E :
Ft={zcE|VWeF, (x,y) = 0}.
Propriétés.

F* est un sous-espace de F, dim F + dim F* = dim F.

3.10 Bases orthonormées

Définition. Une base (ey,...,e,) est dite orthonormée si :
1 sii=y,
{eirej) = o
0 sii##j.
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Coordonnées. Dans une base orthonormeée :
n n
(z,y) = inyi, |2))* = 2%2
i=1 i=1

Théoréme de Gram—Schmidt. Toute base d’un espace euclidien peut étre transfor-

mée en une base orthonormée.

3.11 Projecteurs orthogonaux

Définition (Projecteur). Un endomorphisme p: E — E est un projecteur si :
p =D

Définition (Projecteur orthogonal). Un projecteur p est dit orthogonal sil est sy-
métrique :

(p(x),y) = (z,p(y))-

Décomposition orthogonale. Pour tout sous-espace F :
E=F®F"
Projection orthogonale. Pour tout x € FE| il existe un unique pr(z) € F tel que :
r=pp(x)+ (z —pr(z), z—pr(x)c Fh
Distance 4 un sous-espace.

d(z, F) = ||z — pr(2)]-

3.12 Symétries orthogonales

Définition. Une symétrie est un endomorphisme s tel que :
s = 1d.
Symétrie orthogonale. La symétrie orthogonale par rapport a F' est :

sp(r) = 2pp(z) — .
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3.13 Endomorphismes symétriques

Définition. Un endomorphisme u : £ — E est dit symétrique si :
Ve,y € B, (u(x),y) = (z, u(y)).
Lien matriciel. Dans une base orthonormée, la matrice de u est symétrique.

Propriété spectrale. Toutes les valeurs propres d’un endomorphisme symétrique sont

réelles.

Orthogonalité des sous-espaces propres. Deux sous-espaces propres associés a des

valeurs propres distinctes sont orthogonaux.

3.14 Théoréme spectral

Théoréme spectral réel. Tout endomorphisme symétrique d’'un espace euclidien :
— est diagonalisable,

— admet une base orthonormée de vecteurs propres.

Conséquence matricielle. Toute matrice symétrique réelle est diagonalisable par une

matrice orthogonale.

3.15 Applications

Moindres carrés. Le probléeme
min ||z —
mip o — o
admet une solution unique : la projection orthogonale de x sur F'.

Interprétation géométrique. La projection orthogonale est le meilleur approximant

de z dans F' au sens de la norme euclidienne.
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