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1 Séries numériques

1.1 Généralités et définitions fondamentales

Définition. Soit (un) une suite à valeurs dans R ou dans C. La série numérique de
terme général un est la somme formelle :

u0 + u1 + u2 + . . .

que l’on note :
+∞∑
n=0

un.

Si la suite commence à l’indice n0, on écrit :

+∞∑
n=n0

un.

Exemple.

u1 + u2 + · · · =
+∞∑
n=1

un.

Définition (Sommes partielles). Pour tout N ∈ N, la somme partielle d’ordre N
est :

SN =
N∑

n=0

un = u0 + u1 + · · ·+ uN .

La suite (SN) est appelée suite des sommes partielles de la série
∑
un.

Exemple.

— Pour
+∞∑
n=1

1

n2
, il est difficile de calculer toutes les sommes partielles. Par exemple :

S3 =
1

12
+

1

22
+

1

32
= 1 +

1

4
+

1

9
.

— Pour
+∞∑
n=0

2n, il s’agit d’une série géométrique de raison q = 2, donc :

SN =
N∑

n=0

2n =
1− 2N+1

1− 2
= 2N+1 − 1.
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Définition (Convergence et divergence). La série
∑
un est dite convergente si la

suite de ses sommes partielles (SN) converge. Dans ce cas, on définit :

lim
N→+∞

SN =
+∞∑
n=0

un.

Sinon, la série est dite divergente.

Exemple. Pour
+∞∑
n=0

2n, on a SN = 2N+1−1 et limN→+∞ SN = +∞, donc la série diverge.

Définition (Reste d’une série convergente). Si
∑
un converge vers S, on définit

pour tout N :

RN = S − SN =
+∞∑

n=N+1

un.

1.2 Structure algébrique

Soient
∑
un et

∑
vn deux séries numériques et λ ∈ R.

— Addition :
∑

(un + vn).

— Multiplication par un scalaire : λ
∑

un =
∑

(λun).

— Produit de Cauchy :
(∑

un

)(∑
vn

)
=
∑

wn où wn =
∑n

k=0 ukvn−k.

Remarque. Si les séries
∑
un et

∑
vn convergent :

1.
∑

(un + vn) converge ;

2.
∑

(λun) converge ;

3. Si au moins une des deux converge absolument, alors
∑
wn converge.

1.3 Condition nécessaire de convergence

Théorème. Si
∑

un converge, alors limn→+∞ un = 0.

Corollaire. Si lim
n→+∞

un ̸= 0, alors la série diverge (divergence grossière). La réciproque

est fausse : un → 0 n’implique pas la convergence de
∑
un.
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1.4 Séries de référence

Série géométrique. Soit q ∈ R. La série
+∞∑
n=0

qn :

converge si |q| < 1,

diverge si |q| ≥ 1.

Série de Riemann. Soit γ ∈ R. La série
+∞∑
n=1

1

nγ
:

converge si γ > 1,

diverge si γ ≤ 1.

1.5 Séries à termes positifs

Définition. Une série
∑

un est positive si un ≥ 0 pour tout n.

Propriété. Pour une série positive, la suite (SN) est croissante. Elle converge si et
seulement si elle est majorée.

Critères de convergence

Critère d’Alembert. Soit
∑
un une série à termes positifs et l = limn→+∞

un+1

un
. Alors :

l < 1 ⇒ la série converge,

l > 1 ⇒ la série diverge,

l = 1 ⇒ pas de conclusion.

Critère de Cauchy. Soit
∑
un une série à termes positifs et l = limn→+∞ n

√
un. Alors :

l < 1 ⇒ la série converge,

l > 1 ⇒ la série diverge,

l = 1 ⇒ pas de conclusion.

Critères de comparaison

Sam P. 5



Suites équivalentes. Deux suites (un) et (vn) non nulles à partir d’un certain rang
sont dites équivalentes, noté un ∼ vn, si :

lim
n→+∞

un
vn

= 1.

Équivalences utiles. Si limn→+∞ un = 0, alors :

sin(un) ∼ un, cos(un) ∼ 1, ln(1 + un) ∼ un, eun ∼ 1.

Tout polynôme en n est équivalent à son monôme de plus haut degré.

Comparaison par inégalité. Si 0 ≤ un ≤ vn à partir d’un certain rang :∑
vn converge ⇒

∑
un converge,

∑
un diverge ⇒

∑
vn diverge.

Comparaison par équivalence. Si un ∼ vn, alors les séries
∑
un et

∑
vn sont de

même nature (convergentes ou divergentes).

1.6 Séries alternées

Définition. Une série de la forme
∑

(−1)nun ou
∑

(−1)n+1un, avec un ≥ 0, est appelée
série alternée.

Critère de Leibniz. Si (un) est décroissante et limn→+∞ un = 0, alors la série
∑

(−1)nun

converge.

Exemple. La série harmonique alternée
+∞∑
n=1

(−1)n

n
converge par le critère de Leibniz.

1.7 Séries à termes quelconques

Convergence absolue et semi-convergence

Définition. La série
∑
un est absolument convergente si

∑
|un| converge. Toute

série absolument convergente est convergente.

Exemple.
+∞∑
n=1

(−1)n

n
converge (critère de Leibniz) mais

∑+∞
n=1

1
n

diverge, donc elle est

semi-convergente.
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Critères usuels de convergence absolue

Critère d’Alembert (valeurs absolues). Si lim
n→+∞

∣∣∣∣un+1

un

∣∣∣∣ = l, alors :


l < 1 ⇒ convergence absolue,

l > 1 ⇒ divergence grossière,

l = 1 ⇒ pas de conclusion.

Critère de Cauchy (valeurs absolues). Si lim
n→+∞

n
√
|un| = l, alors :


l < 1 ⇒ convergence absolue,

l > 1 ⇒ divergence grossière,

l = 1 ⇒ pas de conclusion.

Théorèmes spécifiques

Théorème spécial des séries alternées (TSSA). Si (|un|) est décroissante et tend
vers 0, alors

∑
un converge.

Série de Riemann alternée. La série
+∞∑
n=1

(−1)n

nλ
converge si et seulement si λ > 0.

Série de Bertrand. Pour α, β ∈ R :

+∞∑
n=2

1

nα(lnn)β
converge si et seulement si

α > 1, pour tout β,

ou α = 1 et β > 1.

Sommes télescopiques. Si vn = un+1 − un, alors :∑
vn converge ⇔ (un) converge,

et
+∞∑
n=0

vn = lim
n→+∞

(un − u0).

2 Intégrales

Dans tout ce chapitre, on fixe deux réels a, b ∈ R tels que a < b.
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2.1 Fonctions en escalier et intégrale

Définition (Subdivision). Soit n ∈ N∗. On appelle subdivision du segment [a, b]

toute famille ordonnée
σ = (x0, x1, . . . , xn)

telle que
a = x0 < x1 < · · · < xn = b.

On note S(a, b) l’ensemble des subdivisions de [a, b].

Exemple. La famille (0, 1
2
, 1) est une subdivision du segment [0, 1].

Définition (Subdivision régulière). On appelle subdivision régulière de rang n

du segment [a, b] la subdivision définie par

xk = a+ k
b− a

n
, k = 0, . . . , n.

Définition (Fonction en escalier). Une fonction φ : [a, b] → R est dite en escalier
s’il existe une subdivision σ = (x0, . . . , xn) de [a, b] et des réels c0, . . . , cn−1 tels que

∀k ∈ {0, . . . , n− 1}, ∀x ∈]xk, xk+1[, φ(x) = ck.

On note E([a, b]) l’ensemble des fonctions en escalier sur [a, b].

Définition (Intégrale d’une fonction en escalier). Soit φ ∈ E([a, b]) associée à une
subdivision σ = (x0, . . . , xn). On appelle intégrale de φ sur [a, b] la quantité

∫ b

a

φ(x) dx =
n−1∑
k=0

ck(xk+1 − xk).

Propriétés fondamentales. Soient φ, ψ ∈ E([a, b]) et λ ∈ R.

—
∫ b

a

(φ+ ψ) =

∫ b

a

φ+

∫ b

a

ψ

—
∫ b

a

λφ = λ

∫ b

a

φ

— Si φ ≥ 0, alors
∫ b

a

φ ≥ 0

Relation de Chasles. Pour tout c ∈ [a, b] :∫ b

a

φ(x) dx =

∫ c

a

φ(x) dx+

∫ b

c

φ(x) dx.
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2.2 Fonctions continues par morceaux

Définition. Une fonction f : [a, b] → R est dite continue par morceaux s’il existe
une subdivision σ = (x0, . . . , xn) telle que :

— f est continue sur chaque intervalle ]xk, xk+1[,
— f admet des limites réelles à droite et à gauche en chaque xk.
On note C0

pm([a, b]) l’ensemble des fonctions continues par morceaux sur [a, b].

Remarques.
— Toute fonction continue est continue par morceaux :

C0([a, b]) ⊂ C0
pm([a, b]).

— Toute fonction en escalier est continue par morceaux :

E([a, b]) ⊂ C0
pm([a, b]).

Intégrabilité. Toute fonction f ∈ C0
pm([a, b]) est intégrable sur [a, b].

Positivité. Si f ∈ C0
pm([a, b]) et f(x) ≥ 0 sur [a, b], alors

∫ b

a

f(x) dx ≥ 0.

La réciproque est fausse.

Inégalité de Cauchy–Schwarz. Pour toutes fonctions f, g ∈ C0
pm([a, b]) :

∣∣∣∣∫ b

a

f(x)g(x) dx

∣∣∣∣ ≤ (∫ b

a

f(x)2dx

)1/2(∫ b

a

g(x)2dx

)1/2

.

Nullité de l’intégrale. Si f est continue, positive sur [a, b] et∫ b

a

f(x) dx = 0,

alors f est identiquement nulle.

2.3 Sommes de Riemann

Proposition. Soit f ∈ C0
pm([a, b]). Alors :

lim
n→+∞

b− a

n

n∑
k=1

f

(
a+ k

b− a

n

)
=

∫ b

a

f(x) dx.
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2.4 Primitives et intégrale définie

Définition (Primitive). Soit I un intervalle de R et f : I → R continue. Une fonction
F : I → R est une primitive de f si

F ′(x) = f(x), ∀x ∈ I.

Théorème. Toute fonction continue sur un intervalle admet des primitives.

Définition (Intégrale définie). Si f est continue sur [a, b] et F une primitive de f ,
on définit ∫ b

a

f(x) dx = F (b)− F (a).

Théorème fondamental de l’analyse. Si f est continue sur [a, b] et

F (x) =

∫ x

a

f(t) dt,

alors F est une primitive de f sur [a, b].

2.5 Méthodes de calcul

Intégration par parties

Proposition. Si f, g ∈ C1([a, b]), alors :∫ b

a

f ′(x)g(x) dx = [f(x)g(x)]ba −
∫ b

a

f(x)g′(x) dx.

Changement de variable

Proposition. Soit φ ∈ C1([a, b]) strictement monotone et f continue sur φ([a, b]). Alors :∫ φ(b)

φ(a)

f(u) du =

∫ b

a

f(φ(x))φ′(x) dx.

2.6 Intégrales généralisées

Définition. Une intégrale est dite généralisée si :
— l’intervalle est infini ;
— ou la fonction n’est pas bornée.

Convergence. Une intégrale généralisée converge si la limite définissant l’intégrale
existe et est finie.
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Convergence absolue. Si ∫ b

a

|f(x)| dx

converge, alors ∫ b

a

f(x) dx

converge.

2.7 Intégrales usuelles

Intégrales de Riemann. Soit α ∈ R :∫ 1

0

1

xα
dx converge ssi α < 1,

∫ +∞

1

1

xα
dx converge ssi α > 1.

Exponentielle. ∫ +∞

0

e−αxdx converge ssi α > 0.

Critère de comparaison. Soient f, g continues, positives sur [a, b[, avec f ≤ g.
— Si

∫
g converge, alors

∫
f converge.

— Si
∫
f diverge, alors

∫
g diverge.

Théorème d’équivalence. Si f(x) ∼ g(x) au voisinage d’un point singulier, alors∫
f et

∫
g sont de même nature.

3 Formes bilinéaires, espaces euclidiens et endomor-

phismes remarquables

Dans tout ce chapitre, E désigne un espace vectoriel réel de dimension finie n.

3.1 Formes bilinéaires

Définition. Une application
φ : E × E −→ R

est appelée forme bilinéaire si elle est linéaire par rapport à chacune de ses variables,
c’est-à-dire :

∀x, y, z ∈ E, ∀λ ∈ R,

φ(x+ y, z) = φ(x, z) + φ(y, z),

φ(λx, z) = λφ(x, z),
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et de même pour la seconde variable.

Exemples.
— Dans Rn, l’application (x, y) 7→ x⊤y est une forme bilinéaire.
— L’application (x, y) 7→ 0 est une forme bilinéaire.
— L’application (x, y) 7→ ∥x∥ ∥y∥ n’est pas bilinéaire.

Définition (Forme symétrique). Une forme bilinéaire φ est dite symétrique si :

∀x, y ∈ E, φ(x, y) = φ(y, x).

Définition (Forme antisymétrique). Une forme bilinéaire φ est dite antisymé-
trique si :

∀x, y ∈ E, φ(x, y) = −φ(y, x).

Propriété. Si φ est antisymétrique, alors :

∀x ∈ E, φ(x, x) = 0.

Réciproque. La réciproque est fausse en général.

3.2 Matrice associée à une forme bilinéaire

Définition. Soit B = (e1, . . . , en) une base de E et φ une forme bilinéaire. On appelle
matrice associée à φ dans la base B la matrice

MB(φ) =
(
φ(ei, ej)

)
1≤i,j≤n

.

Expression matricielle. Si x, y ∈ E ont pour coordonnées X, Y ∈ Rn dans la base B,
alors :

φ(x, y) = X⊤MB(φ)Y.

Changement de base. Si P est la matrice de passage d’une base B à une base B′,
alors :

MB′(φ) = P⊤MB(φ)P.

Symétrie matricielle.

φ est symétrique ⇐⇒MB(φ)
⊤ =MB(φ).
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3.3 Formes quadratiques

Définition. Une application q : E → R est appelée forme quadratique s’il existe une
forme bilinéaire symétrique φ telle que :

∀x ∈ E, q(x) = φ(x, x).

Remarque fondamentale. Une forme quadratique ne détermine pas une unique forme
bilinéaire, mais elle détermine une unique forme bilinéaire symétrique associée.

Polarisation. La forme bilinéaire symétrique associée à q est donnée par :

φ(x, y) =
1

2

(
q(x+ y)− q(x)− q(y)

)
.

Expression matricielle. Dans une base B :

q(x) = X⊤AX,

où A est une matrice symétrique réelle.

Exemple. Dans R2 :

q(x, y) = x2 + 2xy + 3y2 ⇐⇒ A =

(
1 1

1 3

)
.

3.4 Positivité des formes quadratiques

Définition. Une forme quadratique q est dite :
— positive si ∀x, q(x) ≥ 0,
— définie positive si ∀x ̸= 0, q(x) > 0,
— négative si ∀x, q(x) ≤ 0,
— indéfinie sinon.

Lien matriciel. q est définie positive si et seulement si sa matrice associée est symé-
trique définie positive.

Critère de Sylvester. Une matrice symétrique réelle est définie positive si et seulement
si tous ses mineurs principaux sont strictement positifs.
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3.5 Diagonalisation des formes quadratiques

Théorème (Réduction de Gauss). Toute forme quadratique réelle peut être mise
sous forme diagonale dans une base convenable :

q(x) = λ1x
2
1 + · · ·+ λnx

2
n.

Signature. Le nombre de coefficients strictement positifs et strictement négatifs est
invariant par changement de base.

Théorème d’inertie de Sylvester. La signature (p, q) d’une forme quadratique réelle
est indépendante de la base choisie.

Cas particulier. Une forme quadratique est définie positive si et seulement si tous les
coefficients diagonaux sont strictement positifs.

3.6 Applications géométriques

Classification des coniques. Les formes quadratiques permettent de classifier les co-
niques selon leur signature :

— ellipse,
— hyperbole,
— parabole (cas dégénéré).

Exemple.
x2 + y2 = 1 ellipse, x2 − y2 = 1 hyperbole.

3.7 Produit scalaire

Définition. Un produit scalaire sur E est une forme bilinéaire symétrique ⟨·, ·⟩ :

E × E → R telle que :
— ∀x ∈ E, ⟨x, x⟩ ≥ 0,
— ⟨x, x⟩ = 0 ⇐⇒ x = 0.

Exemples.
— Dans Rn :

⟨x, y⟩ =
n∑

i=1

xiyi.

— Pour une matrice symétrique définie positive A :

⟨x, y⟩A = x⊤Ay.
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Norme associée. On définit :

∥x∥ =
√

⟨x, x⟩.

3.8 Inégalités fondamentales

Inégalité de Cauchy–Schwarz. Pour tous x, y ∈ E :

|⟨x, y⟩| ≤ ∥x∥ ∥y∥.

Démonstration. Considérer la fonction t 7→ ⟨x+ ty, x+ ty⟩ et utiliser sa positivité.

Inégalité triangulaire.
∥x+ y∥ ≤ ∥x∥+ ∥y∥.

Distance. La distance associée est :

d(x, y) = ∥x− y∥.

3.9 Espaces euclidiens

Définition. Un espace vectoriel réel de dimension finie muni d’un produit scalaire est
appelé espace euclidien.

Orthogonalité. Deux vecteurs x, y sont orthogonaux si :

⟨x, y⟩ = 0.

Orthogonal d’un sous-espace. Pour un sous-espace F ⊂ E :

F⊥ = {x ∈ E | ∀y ∈ F, ⟨x, y⟩ = 0}.

Propriétés.

F⊥ est un sous-espace de E, dimF + dimF⊥ = dimE.

3.10 Bases orthonormées

Définition. Une base (e1, . . . , en) est dite orthonormée si :

⟨ei, ej⟩ =

1 si i = j,

0 si i ̸= j.
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Coordonnées. Dans une base orthonormée :

⟨x, y⟩ =
n∑

i=1

xiyi, ∥x∥2 =
n∑

i=1

x2i .

Théorème de Gram–Schmidt. Toute base d’un espace euclidien peut être transfor-
mée en une base orthonormée.

3.11 Projecteurs orthogonaux

Définition (Projecteur). Un endomorphisme p : E → E est un projecteur si :

p2 = p.

Définition (Projecteur orthogonal). Un projecteur p est dit orthogonal s’il est sy-
métrique :

⟨p(x), y⟩ = ⟨x, p(y)⟩.

Décomposition orthogonale. Pour tout sous-espace F :

E = F ⊕ F⊥.

Projection orthogonale. Pour tout x ∈ E, il existe un unique pF (x) ∈ F tel que :

x = pF (x) + (x− pF (x)), x− pF (x) ∈ F⊥.

Distance à un sous-espace.

d(x, F ) = ∥x− pF (x)∥.

3.12 Symétries orthogonales

Définition. Une symétrie est un endomorphisme s tel que :

s2 = Id.

Symétrie orthogonale. La symétrie orthogonale par rapport à F est :

sF (x) = 2pF (x)− x.
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3.13 Endomorphismes symétriques

Définition. Un endomorphisme u : E → E est dit symétrique si :

∀x, y ∈ E, ⟨u(x), y⟩ = ⟨x, u(y)⟩.

Lien matriciel. Dans une base orthonormée, la matrice de u est symétrique.

Propriété spectrale. Toutes les valeurs propres d’un endomorphisme symétrique sont
réelles.

Orthogonalité des sous-espaces propres. Deux sous-espaces propres associés à des
valeurs propres distinctes sont orthogonaux.

3.14 Théorème spectral

Théorème spectral réel. Tout endomorphisme symétrique d’un espace euclidien :
— est diagonalisable,
— admet une base orthonormée de vecteurs propres.

Conséquence matricielle. Toute matrice symétrique réelle est diagonalisable par une
matrice orthogonale.

3.15 Applications

Moindres carrés. Le problème

min
y∈F

∥x− y∥

admet une solution unique : la projection orthogonale de x sur F .

Interprétation géométrique. La projection orthogonale est le meilleur approximant
de x dans F au sens de la norme euclidienne.
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